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Abstract. Acontroller design method, called Coefficient Diagram Method (CDM), is introduced.

By this method the designer can design the characteristic polynomial of the closed loop system

efficiently taking a good balance of stability, response, and robustness. By CDM, a solution of the
ACC benchmark problem is given, and solutions given by various researchers are compared. Theoretical

analysis is made to clarify the robustness trade-off.
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1. INTRODUCTION

The purpose of this paper is to show the effectiveness of a
control design method called "Coefficient Diagram Method
(CDM)" by solving the benchmark problem proposed by Wie.
(1992a) in American Control Conference (ACC).

The CDM is fairly new and not well-known, but its basic
philosophy has been known in control community for more
than 30 years (Graham, 1953) (Chestnut, 1959) (Kessler,
1960) (Kitamori, 1979) (manabe, 1991) (Tanaka, 1992b).
The idea has been successfully used in many fields of industry
such as steel mill control (Kessler, 1960), gas turbine control
(Thnaka, 1992b), and space craft attitude control (Manabe,
1981, 1994b).

The coefficient diagram is a semi-log diagram where the
coefficients of characteristic polynomjal are shown in
logarithmic scale in the ordinate and the numbers of power-
corresponding to each coefficient are shown in the abscissa, as
shown in Fig. 1. The degree of convexity is a measure of
stability. The general inclination of the curve is a measure of
response speed. The variation of the shape of the curve is a
measure of robustness. Thus the three major characteristics
of contro] system, namely stability, response, and robustness
are shown graphically in a single diagram, enabling the
designer to make a balanced judgment in the course of his
design.

The power of the coefficient diagram method (CDM) lies in
that it generates not only non-minimum phase confrollers but

also unstable controllers when required. Unstable controllers
are shown to be very effective in controlling such unstable
plants as inverted pendulums with limited number of sensors
(Manabe, 1994a). LQG sometimes fails to produce a robust
controller for plant with flexibility (poles at the vicinity of
the imaginary axis) as pointed by various authors (Edmunds,
1983, and Mills, 1992). CDM produces very robust
controllers in such cases. The experience show that only
well-designed Hoo controlier can be equivalent to CDM
controllers. '

This paper will first explain the basics of CDM. Then ACC
benchmark problem is briefly introduced, and a solution is
derived by CDM. Then theoretical analysis is made, and trade-
off structure of various requirements is clarified. By so doing,
it is found that the CDM solution seems to be the only
solution to the problem. Then more detail of solution
method of CDM is explained. Finally CDM solution is
compared with solutions by various researchers, and it is
found to be equivalent to or better than the best solution
derived so far (Thompson, 1995). The historical background
of CDM is referred to other literature (Manabe, 1994b).

2. BASICS OF CDM

General description of CDM
The salient features of CDM will be summarized as follows;

(1) CDM is is a control system design method, where the
coefficient diagram is used as a vehicle to carry the necessary
information. In CDM, the characteristic polynomial and the
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controller are designed simultaneously with due consideration
to the performance specification and constraint imposed to the
controller. By so doing, both the merit of open-loop
synthetic approach in the classical control, where the practical
constraints on the controller is always retained, and the merit
of the closed-loop analytic approach in modern control, where
performance specification is given at first, is retained. This
becomes possible, because, in CDM, design is carried out
directly to the coefficients of the characteristic polynomial,
which are expressed in closed form of the controller and plant
parameters.

(2) The CDM is an algebraic design method over
polynomial ring. Instead of transfer function, its denominator
and numerator are separately expressed as polynomial of s, for
the plant and the controller. By so doing, the ambiguity
inherent to the transfer function is avoided, and the same rigor
as in the state space representation is maintained. At the
same time, the compactness of expression as in the transfer
function expression is retained.

(3) The theoretical background of CDM is the sufficient
condition of stability by Lipatov (1978). The tradition of
Kessler {1960) standard form is inherited and improved.

‘Definitions and mathematical relations

Because polynomial is used extensively in CDM, some
shorthand expression of polynomial is necessary. When
characteristic polynomial P(s) is given as

P@)=as"+..+as+a=] as'

@
a coefficient row vector in descending order, a , is defined as
a;=la, .. a; agl )]
The polynomial is expressed in shorthand expression as
P(s)=[a] s 3)
The addition of the two polynomials corresponds simply to
the addition of the two coefficient vectors. ‘The
multiplication of two polynomials corresponds to the
convolution of two coefficient vectors. Thus if

P3(s) = P1(s) + P2(s) , Pags) = P1(s) P2(s) @
then
a3;=al,+a2,;, ad,=conv(al,,a2) )

In the development of CDM, the mathematical notation used
in MATLAB is extensively used. The function "conv" is one
example.

In CDM, stability index Y, , equivalent time constant ¥, and
stability limit y,* play very important role. They are defined
from the coefficients of the characteristic polynomials as
follows;
vi=all(a, a;.)
T=4a,/a,

i=l~n-1

®

. O
ViEllya+ 1y, isl~n-1, y,=y,=% (g)

By use of these parameters, the coefficient vector of the

characteristic polynomial is expressed as follows;
a,=[age"/TT,)) .. a¢t al (9a)

where

S N E (9b)
Il =Ty o Tl =vi i, - ¥ (%)
In other word, the coefficient 3 is given as
a;=agw i (. Y - YYD (9d)
Also stability index of higher order is defined as
aaz _ G Ky j
Vi = a,; a4 ; - [JJ; ivjor Yiegu 1V (10a)

Especially the stability index of the 2ad order is very useful
in later development.
2 - 2
Yia= 0 1 @28 2) =Y, 1 Yy Vi (10b) -
From these equations, a few useful relations among the '
coefficients and the parameters are obtained as follows;

g la=viT =t/ . Y210 (11a)
(a;,_ya;, DIRCH aj) Yot Yi-2 - Yje2Y5an

(11b)

Coefficient diagram

‘When a characteristic polynomial P(s) is given as
P()=0255°+5*+25°+ 25 +5+0.2 (12a)

or the coefficient vector a of the characteristic polynomial is

expressed as
a,=[025 1 2 2 1 02] (12b)

the coefficient diagram is shown in Fig. 1, where coefficient
a,, stability index y,, equivalent time constant T, and
stability limit ¥y are shown in one figure. The stability
index can be graphically obtained as in Fig. 2a. When the
curvature of a, curve becomes large, the system become more
stable corresponding to larger ¥ 's as shown in Fig. 2b. When
the curve a, is left-end-down, the equivalent time constant T is

-~ small and the response is fast as shown in Fig. 2¢c.
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Stability condition used in CDM

The stability conditions are summarized as follows;

By mathematical manipulation of Routh-Hurwitz criterion,
the stability condition for the 3rd and 4th order system
becomes

>V (13)
For the system higher than or including 5th degree, the
sufficient condition for stability and instability is obtained by
Lipatov (1978). The sufficient condition for stability is that
either of the following two equations holds for any i.

v,>112y;, i=1~n-1 (14a)

G 10> 147, iz1~n-2 (14v)
The sufficient condition for instability is that the following
equation holds for some i.

G vd¥ <1, i=1~n-2 (15)
Eq. (14b) has been quoted in literature (Bose, 1988) (Tanaka,
1992b), but Eq. (14a) has not been quoted in literature to the
ahthor's knowledge. In CDM, Egq. (14a) is used, because of
its similarity in form to the Routh-Hurwitz criterion for the
3rd and 4th order, and its closeness to necessary and sufficient
condition.

izl~n-1

Sometimes it is more convenient to express the stability
condition in terms of the coefficients of characteristic
polynomial. The resulis are as follows;
Stability condition for the 3rd order
@a;>dzag (16)
Stability condition for the 4th order
83/ (a489) =¥, 2=Y3 Y31, > 4105+ 025 (u+ 1/ w)]
n=(a/a)’ 1 (ag/ag)=v;/y, an
Sufficient condition for stability for 5th order and above
al 1@, 28D =Y 2 =Y 1 Y1 Yio
>5105+025u+1/w}, anmyi=2~n-2 (18)
R=0, /e )@, e ) =Y, Y
Sufficient condition for instability
,,,8,<4;,,8,_,, Somei=1l~n-2 (19)
Stability condition by Lipatov _
Lipatov (1978) derived sufficient condition for stability and
sufficient condition for instability. Because thesé conditions
constitute the theoretical basis for CDM, brief explanation of
the theorems will be made, where notations are modified to
harmonize with the expressions of CDM.

The sufficient condition for stability is derived as follows;

(1) First it is proved that the characteristic polynomial of n-

th order is stable, if all the partial 5th order polynomials are
stable. If coefficient vector expression is used, this can be
stated as follows;
Consider a n-th order characteristic polynomial, whose
coefficient is a
a=la, .. a ag 20)
If all (n - 6) 5th order polynomials, whose coefficients are aj,,
4i=la;, s a;,40,,5a;,4a,,a], f'"—"o""n“s 1)

are stable, the n-th order characteristic polynomial is stable.
" (2) The stability condition for the 5-th order polynomial is
given by Routh-Hurwitz stability condition. However the

- formula is fairly complicated. This can be greatly simplified,

if sufficient condition is used instead of necessary and
sufficient condition, such as Eqgs. (14a) and (14b). Thus Egs.
(14a) and (14b) are the sufficient condition for stability for the
n-th order characteristic polynomial,

The sufficient condition for instability is proved as follows;

(1) If the 3rd and 4th order polynomial are stable, Eq. (15)
does not hold.

(2) Form stable 5th or 6th order polynomial by multiply-
ing a stable 2nd order polynomial to the 3rd or 4th order
stable polynomial. By direct calculation, it is found that Eq.
(15} does not hold. Thus for any stable polynomial Eq. (15)
does not hold. Thus Eq. (15) is sufficient condition for
instability.

Standard form of CDM _
In CDM, the recommended standard form is

Y1225, Yo 1=Y¥ao2= w0 =152 (22)
The standard forin has the favorable characteristics as folows;

(1) When the order of the numerator polynomial is zero, as
in type 1 servo, the system has virtually no overshoot. Only
negligible overshoot exists for the second and third order A
proper overshoot (about 40%j is guaranteed when the
numerator polynomial is selected to form a type 2 servo.

(2) Among the system with the same equivalent time
constant T, the standard form has the shortest settling time.
The settling time is about 2.5 ~ 3 =,

(3) For the same equivalent time constant, the step
responses of the standard form show almost equal wave forms
irrespective to the order of the characteristic polynomials.

(4) The characteristic roots of lower order have equal decay
characteristics with almost equal negative real parts. They are
aligned on a vertical line. The characteristic roots for higher
order are located within a sector 50 degrees from the negative
real axis, and their damping coefficient  is larger than 0.64.

(5) The CDM siandard form is very easy to remember.

Selection of stability index
In the actual design, the choice of ¥ 1 =25, ¥, =Y, =2 is

strongly recommended, but it is not necessary to make Y, ~

Y, .y equal to 2. The condition can be relaxed as
> 1.5y ~ 23)
In such case, the roots of the higher order become constant
decay and the damping coefficient becomes smaller. The
robustness decreases slightly, but it is largely offset by
narrower bandwidth, increase of design flexibility, and lower
order controller. When variation of some parameter is large,
the corresponding Y, may be increased to guarantee desired
robustness. Because the essence of the CDM lies in the
proper selection of stability indices v 's, some experiences are

required in actua} design, as is true in any design effort.




3. BENCHMARK PROBLEM

Problem statement

The bench mark problem is the control of the two-mass-
spring system shown in Fig. 3, which is a generic model of
an uncertain dynamical system with a rigid-body mode and

. one vibration mode. It is assumed that for the nominal

system m, =m, = 1 and k = 1 with appropriate units and time
is in units of seconds. A control force acts on body 1, and
the positron of body 2 is measured, resulting in a
noncollocated actuator / sensor control problem.

This system can be represented in state-space form as
L1 o o 1 o

xl
L o 0 0 1 X,
i |-kim, kim, O 0 Xy
%, kim, ~k/m, 0O 0 %4
0 0
+ @+w)+ 0 W,
1/m, ! 0 |2
0 1/m, (243)
y=x+v (24b)
=X (24¢)

where x, and x, are the position of body 1 and body 2,
respectively; x, and x, the velocities of body 1 and body 2,
respectively; u the control input acting on body 1; y the
sensor output; wl and w2 the plant disturbances acting on
body 1 and body 2, respectively; v the sensor noise; and z the
output to be controlled (i.e., the performance variable).

There are 4 problems in the benchmark problem, of which
Problem 1 and 2 are considered here in order to clarify the
nature of the problem. Because the specifications shown in
the original problem have some ambiguity, Thompson (1995)
combined Problem 1 and 2, and made the specification more
concrete.

‘The proposed problem (problem1 and 2) is as follows;

(1) For a unit impulse disturbance exerted on body 1 or
body 2, the controlled output of the nominal system shall not
exoeed 0.1 after 15 time wnits.

(2) For the same disturbances the peak control level of the
nominal system shall not exceed 1.

(3) The gain margin shall be 6 dB or greater and the phase
margin shall be at least 30 deg.

(4) The closed-loop system shall be stable for 0.5 < k <
20andm, =m, = 1. ) :

(5). The closed-loop system shall be stable for simultaneous
changes 1 -pm < k, m,, m, < 1+ pm, pm =0.3.

(6) There shall be reasonable high-frequency sensor noise
rejection, performance robustness, and controller complexity.
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Fig. 3. Two-mass-spring system

Derivation of control system
The plant system matrix will be derived from Eq. (24a) as

msi+k -~k %1 wrw ]
-k msrk||n| | W ) ‘

(25
This is solved for x, as
A ) x,=u+w +[(m,/k)s" +1]w, (26a)
where
A,(5)= (m,m,/ K)s* + (m, + m)) s (26b)

The standard controller in the CDM is of two degree of
freedom type, and expressed as

A (5)u=B,(s)y,~B(5) (5 + V) @7
where y_ is the reference input for x,,.

" The closed-loop system matrix is obtained as

rAp(s) -1 [xz] | w + {(m, /B + 1w,
B)A) |1# ] B,(8)y,~B.(s)v.

The responses are

x| 1
|4 |~ P

} 28)
1
AyS)

AL5)
~B c(s)

[Ba(s) yr'-Bc(S) V]

1

+F®- [w, + {(m, 1 k) s* + 1} w,]

(29a)

where the characteristic polynomial P(s) is given as

P(s)=A(5)A4,(5) + B,(5) (29b)

Analysis of specification
The specifications given above will be analyzed, and they will

be interpreted to the terms of CDM to make the design easier
From problem item (1), the equivalent time constant t = 6 sec
is selected, because the settling time is about 2.5 T and the
specified settling time is 15 sec. A controller is called the m
/ n order controller, if the order of the denominator is n, and
that of the numerator m. A 3./ 3 controller is chosen,
because this is sufficient to guarantee stability to the 4th
order plant, and also is sufficient for the high frequency
attenuation. Then A (s) and B (s) will be assumed as

A =L +Ls*+1 s+, (30a)

B(s)=kys*+k,s2+k,s+k, (30b)
where one parameter can be chosen arbitrarily, and 1, is
chosen as

=1 (30c)
and the characteristic polynomial P(s) becomes from Egs.
(26b)(29b)(30a)(30b)



P@)=as’+agt+as’ +as'+ast +astvas+a,
=[5 +1;5° +15° +15']a
+[L 415+ 12+ 15708
+hs + kst + ks + k,

a=(mm,/k), B=(m+m)
For the nominal case, [ o 8]is [1 2], and, for the k
vatiation, the limits are [0.5 2] and [2 2]. For the
simultaneous variation, the limits are [0.7 1.4], [0.37692
1.4}, [1.3 2.6}, and [2.4143 2.6]. The gain margin
specification of 6 dB can be interpreted as the the variation of
[e Bito[0.5 1} ‘

(31a)
(31b)

In the controller design, the value of k, tends to be minus.
Then the decrease of B will produce much decreased value of
a,, which is very detrimental to the stability of the system.
For this reason, k, must be given special consideration.

From Eq. (29a), it is clear that w, requires much more control
effort compared with w,, because of the s? term. Considering

that w, is a unit impulse, the peak value of the u will be

about k, / &, or k, / 1, for the nominal case. Thus this value
is taken as a measure of the control effort.

Thus the basis of the CDM design will be summarized as
follows; ‘
CDM specification
{1) The equivalent time constant T is 6 sec.
{2) The controller is the 3 / 3 order
(3) The nominal value of [ B]is [1 2], and the limits are
[0.5 2],[2 2] for k variation
[0.7 1.4],[0.37692 1.4},[1.3 2.6], [2.4143 2.6]
for pm ’
[0.5 1]. for gain margin of 6 dB.
(4 k, is to be made small negative as far as possible.
{5) k, / 1, is to be made to take the value around 1.
In this way the specification is interpreted to the terms of the
CDM, and the design will proceed on this basis.

4, DESIGN BY CDM

Preliminary design by CDM
The block diagram of the system is shown in Fig. 4. First

design, CDM-1, is made using the standard value for y's and
the equivalent time constant T = 6.

v, =[2 2 22 2 25], =6 (32)
The result is shown in Table 1. Some shorthand notations -
are used as,

Yi=lg - ¥z Y, a=[a .. a a)]

k=l k k Kk L=y L, 1 1]

Also the key figure, KF, is defined as

KF=[k, /], k) (33a)
The first entry of the KF is a measure of the control effort and
the second entry ia a measure of robustness. Also in order 10

summarize the results, the phase margin PM, the gain margin
GM, the settling time t,, the maximum value of the control
effort u__, the variation of k, k . /k_ ., and the
simultaneous change limit pm are shown in a row vector FM
(Figure of merit) defined as

FM=[PM GM t, u_ k_ /k_ pm] (33b)
The bold letters in FM indicate that theé specification is not
satisfied. Also score for FM, which will be defined later, is
shown, This design is robust and satisfy all the specification
except the contro] effort u__, which is fairly Jarge. This °
design shows u___ and robusiness is in a trade-off, and one
has to be sacrificed for the other.

w, lsz‘i’ll

* 1
P il dse g O

Kys® +kos? + ks + ko P

Fig. 4. Block diagram of control system

Improvement of the control effort
In order to decrease u__, it is necessary to make |, large and

k, small. This can be achieved only by reducing the stability
index Y, , especially of the low order. The y, and Y, can not
be decreased, because then the time response will be deterio-
rated. Thus Y, Y, and Y, are decreased to 1.5. The lowest
value considered is 1.5, because the sufficient condition for
stability, Eq(14a), is always satisfied, if all y,'s are larger
than 1.5. They 6 is chosen as 2, because it does not affect 12.

Thus CDM-2 design is made for

y;=[2 1.5 15 15 2 25], t=6 - 34
The result is shown in Table 1. This design satisfies u_,_
condition, but k . /k_ _is not satisfied. In order to find the

" cause for the instability, the stability index y, and the

stability limit y,* are compared for k variation case.
For k = 0.5,
¥,=[2135 1624 2.103 09255 2 25] (353)
Y," =[0.6156 0.9539 1.696 0.9755 1.481 0.5] (35b)
Clearly Y, is deteriorated. This can only be helped by
increasing Y ,, because then Y ," is decreased as is clear from
Eq. (8). Also fork =2,
Y, =[1776 1380 1.267 2175 2 25] (36a)
Y," =10.7247 1.353 1.184 1.290 0.8598 0.5] (36b)
Clearly ¥  is deteriorated. This can be improved by -
increasing Y ;, because then y ;* is decreased.

Improvement of robustness
Now the design CDM-3 is made for

y,=[4 15 15 15 25 2], ©=6 @7
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The result is shown in Table 1. This design satisfies all the
specifications with comforiable margin. The choice of Y, =4
is more or less arbitrary. However, even if it is increased
further, the robustness improvement is not conspicuous. If it
is decreased, the robusiness decreases but the high frequency
attenuation will be better As will be shown later, k,, k,, and
1, are function of T,, where

=t/ (Y1) (38)
Thus for the same T, Y, =2.5 and y, =2 give the same T,
and thus the same k,, k,, and 1,. In the ordinary system, the
system without overshoot is preferred and ¥ | = 2.5 is chosen.
In this problem, the overshoot is allowed because the settling
time definition is given as in item (1) of the problem. Thus
. in order to give the maximum value for Y,, Y, is chosen to
be 2, which is the smallest value for the good time response
wave form.

. Final design

Although CDM-3 is a satisfactory design, further

improvement can be made by increasing T, because the

settling time has some margin. The final design is made for
¥;=[4 15 15 15 25 2], t=64 39

The result is shown in Thble 1. All the specifications are
satisfied with comfortable margin and high score of 8.54 is
achieved, The frequency responses of the open-loop transfer
function are shown in Fig. 5, and the time responses are
shown in Fig. 6.

Magnitude rasponse - open, -cloas

%ot 10! 10° 10! 10?

Fig. 5. Frequency response
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"o 20 20 0 0 26 40 60
impulsewitou Impuizs w2to u :
14 T H L4

Fig. 6. Time response

5. THEORETICAL ANALYSIS

Theoretical analysis related to control effort and robustness

In ordinary control system design, CDM design is simple and
straight forward, because only a few stability indices of low
order are chosen in a standard manner and the equivalent time
constant becomes only design parameter. However in ACC-

- benchmark problem, the design is complicated, because there

is a trade-off between robustness and control effort, and further
more this trade-off is very tight due to settling time
constraint. ‘

Thus theoretical analysis is required to relate robustness and
control effort to CDM design parameters such as stability
index v, and equivalent time constant T. Such theoretical
analysis is possible due to the close connection of ¥, and T to
the controller and plant parameters, and due to the usage of
the sufficient condition for stability by Lipatov (1978).
These two features are the most conspicuous points in the
CDM, and they are fully utilized in this benchmark problem.

Selection of stability index

First the topic of selecting Y, from gain margin GM and
control effort u . will be discussed. From Eq. (9d), each
coefficient of the charactensuc po]ynomial will be shown as
= a3t e ¥ YD)
T =/ (a2 ¥ ﬂz"ao" "Yx (40)
For the nominal case, from Eqs. (31a) and (40), the controller
parameters are expressed by ¥, and T,, as follows;

L=@2+k )f: / (YsYs \PREL (41a)
L=@+k) 3! (s ma (41b)
LW+2=Q2+k) T3/ (V41D (41¢)
1+2l,=Q+k) iy, (41d)
k 3+2L,=Q2+k)T, @1e)

Now if 1, is eliminated from Egs. (41b) and (41d), the
following relation is derived.

1=Q+k) [v3/v3 =273/ (15 vivD)] “2)
From this equation, it becomes clear that, for the given 1, ,
YooYy and’13 are related to k, . Fort aﬁzmd'fz*f1 =3,
the T, is equal to 1.2. Thus ifk, = - 0.3 is assumed from
GM 2 6 dB condition as will be explained later and y , Y,
and v , are chosen to be equal, the solution of Eq. (42) gives.

Yo=Y, =Y,51.4909, or 223495 (43)
This is the limitation imposed on ¥, by the GM requirement.

Next theu < 1 condition will be considered. In order to
satisfy this condmon, k, /1, must take value less than or
around 1. If1 is ehmmated from Egs. (416) and (41e), and
then divided by Eq. (41b), the following relation is obtained.
ks /L= [1-233 1 (ayD [ (s y3vDI+ 411 1 (49)
By the assumption of 1, / 1, = 0 (this value is usually very

small), T,=12,Y,=Y,=Y,; andk, /1,<1, the following



relation will be derived.
YS=Y4=?3§1.5022 (45)

From Egs. (43) and (44), it will be safely concluded that y ,

'Y, and Y ; must take the value around 1.5 in order to satisfy

GMandu__ condition. Also it should be noted that the
condition ¥ ¢ =y + =Y; = 1.5 satisfies the sufficient condition
for stability Eq. (14a). Thus if Eqgs. (43) and (45) specify,
say, Yo =Y, =Y,< 1.4, no solution exists for the problem.
In other words, this benchmark problem is a very "tight
problem"”, where the solution lies in a very narrow limited
region. Egs. (42) (44), withl, =0, andu_ =k, /1, , are
shown in Fig. 7. ,
tau2=[1.11213 14] lineu(: - ~ -]

T T

1

4 15 16 1.7 18 18
gammas, 4,3

N

Fig. 7. Relation among design parameters

Trade-off relations

The careful analysis of Fig. 7 helps to clarify the trade-off
relations among GM, u___, K in / Kpae @0d pm. For the same
T, , the increase of ¥ s+ ¥4 and ¥, necessitates the
deterioration of u_,_ and GM. As seen from CDM-1 and
CDM-2, the increase of ¥ T T N always helps k min | ez .
robustness due to spring constant k variation. Thusk . /

K .y I8 in trade-off relation with GM and u nax”

For the same Y, Y ,,and Y ,, increase of T, deteriorates GM
and improves u__. Thus GM and u_,_ are in trade-off
relation. As seen from CDM-3 and CDM-4, increase of <,
deteriorates GM, but it improves u__ conspicuously and
higher score is obtained. The robustness of pm can be
interpreted as a combined effect of GM and k , /..,
because the former is related to m,, m, variation, and the
latter to k variation. Thus, if higher u,.. is tolerated, very
high robustness can be achieved simply by increasing Y, and

decreasing T,.

Relation between GM and k2 -
Now the relation between GM and k, will be examined.

From Egs. (10b) (31a), the second order stability index v, ,

will be given as follows;
Y22=a2 1 (aga0) =2+ k) 1 (1 +21p) ko)
=¥;Y3Y,= 1875 (@6)
GM = 6 dB means stability is maintained for the increase of
k, and k; by 2 times. The stability bound is considered
around one third of the ¥, , , 6.25, from Eq. (18). From this
observation the following relation is derived.

@+ky)?13s@+2kp12 (@7a)
From this, the bound of k2 is obtained as follows.
k, 2 - 031010 47

This is approximate condition for 6 dB GM. .

6. DESIGN PROCEDURES

Formal statement of CDM design

The salient feature of CDM is that the characteristic
polynomial and the controller are designed simultaneously.
By this feature, the trade-off among various requirements is
greatly expedited, because some requirements are closely
related to the characteristic polynomial, while others are
related to the parameter of the controller.

The formal statement of CDM design procedure will be stated
as follows;
Given
(1) The plant polynomials, Ap(s), » B?(s)
(2) The upper bound of equivalent time constant T < <
(3) The range of stability index Yoin <Y < ¥ o
(4) The order of controller polynomial, =n,, m,
(5) Some parameters of controller, (usually given by the -

max

steady state characteristics) L, k
Find
(1) Proper equivalent time constant T
(2) Proper stability index Y;
(3) The characteristic polynomial P(s)
(4) The controller polynomials
denominator Afs)
feedback numerator B(s)
reference numerator B(s)
Considering

(1) Reference tracking characteristics
(2) Disturbance rejection characteristics
(3) Robustness requirement

Design procedures
Thus the design process goes as follows;

(1) Assume the controller in the simplest possible form,
such as

AL =15+, s+, (48a)
B(s)=k,s*+k s+ k, (48b)
B(s)y=m,s +m, (48¢c)

. Some parameters will be derived from the steady state

characteristics.



(2) Solve the following Diophantine equation
simultaneously as stated in the formal statement.

a=agt' /(o ¥iog - Y52V (49)

A,(5)A,(5) +B,(5)B,(s)=P(s)=a,s"+..+a,5 +a,
If solution can not be found, modify the controller
assumption and repeat the process.

(3) Design B, (s) to satisfy the reference tracking
characteristics.

It should be noted that the solution of the above Diophantine
equation is not straight forward, because known variables and
unknown variables are in both left and right side, and also
number of equations are not necessarily equal to the number
of unknown variables.

Method of solution
Because the solution of the Diophantine equation is not
straight forward, following three methods are used together in
combination according to the design stage.

(1) Graphical method

At the early design stage, drawing the coefficient diagram by

hand is strongly recommended. By so doing, the basic
structure of the controller will be designed intuitively.

(2) Use of design form
There is a special design form for CDM. The designer can
proceed his design by filling this form.

(3) Use of CAD (Computer Aided Design)
MATLAB M-files are developed to expedite the design. There
are three important functions.

"function g2t" gives the most favorable equivalent time
constant for the given plant and stability index.

"function g2c" solves the Diophantine equation, and
controller parameters are obtained. '

"function c2g" calculate various characteristics for given
controller and plant. Frequency response, time response, and
roots location are shown in figures.

Also there are other functions to relate CDM to LQG. It can,
be proved that there always exists an augmented state feedback
control, which exactly corresponds to a CDM design, if
indefinite weight Q is allowed (Hayase, 1973) (ohta, 1991).
By use of these functions, the gap between these two
approaches is filled effectively.

In ACC benchmark problem, a special M-file, called accfm,
is developed, using g2c and c2g, and various characteristics of
the control system, including FM and score, are immediately
obtained for the given controller.

7. COMPARISON WITH PUBLISHED SOLUTIONS

Scoring system
Thopson introduced a scoring system in his paper

(Thompson, 1995, Eq. (21) and Table 2). If the system
satisfy the specification, such that

FM=[30 6 15 1 05/2 0.3] (50a)
score is 2. If the result exceeds the specification, such that

FM =[40 10 9 0.5 0.3535/2.828 0.4] (50b)
the score becomes 14, the highest value. In this scoring
system, a score of zero is good, a score over + 4 is very good,

and a score below - 4 indicates the design needs improvement.

Published solutions :

The Journal of Guidance, Control, and Dynamics (September-
October 1992) presented 11 solutions to the problem.. The
first 6 solutions use various design techniques such as
minimax method (Mills, 1992), game theoretic control
(Rhee, 1992), pole placement (Lilja, 1992), quantitative .
feedback theory (Jayasuriya, 1992), maximum entropy
(Collins, 1992), and u-synthesis (Braatz, 1992). The
following 5 solutions use a variety of techniques based on
He theory (Chiang, 1992) (Byms, 1992) (Wang, 1992)
(Adams, 1992) (Wie, 1992).

Thompson (1995) made the specification more concrete and
made his own design using classical / H, approach, where

* weights for H, solution are obtained from the classical

control theory. By so doing, design procedure is more
automated, while the rich experiences in classical control are
retained. '

These 11 solutions and Thompson's solution are tabulated by
Thompson (1995). From these solutions, some solutions
with high score are shown in Table 2. Chiang's solution is
taken from the original paper, which has higher score
compared with the one presented by Thompson. Others are
the same as those presented by Thompson, with minor
correction in numbers.

Comparison of solutions
The results of comparison are as follows;

(1) The CDM design can produce a good controller
systematically. It is worthy to notice that even the
preliminary design, CDM-1, can produce a fair design. The
final design, CDM-4, is better than any previously published
design. The controller is 3 / 3 order and simple.

(2) Thmpson's result, Eq. (19), is only controller which
satisfies all the specification. This design is similar to
CDM-4 in the patiern of Y, and value of T. Thus the

controllers are similar and FM's are similar, too.

(3) Wie's result is the second highest. This is similar to
the minimum-phase controller by Thompson. Both
controllers barely missed the specification, and have high
score.

(4) Chiang's result comes to the 3rd place in score, It has
small GM. The rest of the controllers by Lilja, Braatz,
Wang, Byms, and Adams have about the same score. They
have the same tendency of having smaller PM and GM.

(5) Although various methods are presented with various
results, the variation of the results is mainly due to the
difficulty in interpreting the given specification to the design
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parameters such as weights, and the skill to overcome these
difficulties. The design methodologies seem to play minor

roll in reaching to good design compared with the
interpretation of the specification. Thus designer should
choose the design methodology which is easiest in the
interpretation process.

Table 1 The CDM designs
CDM-1 Standard value design
Y.=[2 2 2 2 2 25], =6
k =[1.187 -0.4738 0.6359 0.1060]
I, =[0.003709 0.04945 03223 1]
KF =[1.187 / 0.04945 - 0.4738] score = - 1.20
FM =[395 6.6 129 14.7 0.35/3.25 0.39]
CDM-2 Reduced control effort design
y;=[2 15 15 15 2 25], t=6
k, =[0.5126 -0.3219 0.6992 0.1165]
l, =[0.05431 03055 0.7506 1]
KF =[0.5126 / 0.3055 -0.3219] score = - 0.65
FM =[38.2 6.2 128 097 0.53/1.74 0.23]
CDM-3 Robustness recovered design
Y, =[4 15 15 15 25 2}, =6
k, =[04040 -0.3219 0.5594 0.09323]
1, ={0.02716 03055 0.8049 1]
KF =[0.4040/ 0.3055 -0.3219] score = 6.45
FM =[374 7.3 141 089 046/229 0.35]
CDM-4 Final design
Y,=[4 15 15 15 25 2], t=64
k, =[0.2039 -0.3895 0.5033 0.07864]
1, =[0.03599 03795 09287 1]
KF =[0.2039 / 0.3795 - 0,3895] score = 8.54
FM =[354 6.2 150 059 0.47/345 0.42]

Table 2 Comparison of solutions

Lilja (1992) next eq. after (5) Pole placement
Y, =[1.029 1771 2.267 1.999 2.077]

T = 8.862

k =[-0.8964 02586 0.02919]

1,=[0.6083 1.178 1]

KF = [not applicable] score = 0.26

FM =[23.8 3.7 29.0 055 023/ 0.35]
Braatz (1992 s. (29) ~ (32) p-synthesis

¥, =[2.061 1.551 1.556 1.512 1.589 1.592 2.650]

1T =6.182

k, =[0.1923 -0.6580 0.5752 0.09305]

1, =[0.01346 0.1097 0.4068 0.8871 1]

KF =[0.1923 / 0.4068 - 0.6580] score =- 1.9

FM =[27.2 2.8 141 095 0.57/2.50 0.28]
Chiang (1992) Eq. (A2) Hoo and pole shifting

Y, =[1.637 1.559 1.438 1.453 1.588 1.813 2.404]

T =7.682

k =[-0.2431 -03151 0.5273 0.06864)

1, =[0.09490 0.4558 1.148 1.606 1]

score = 2.8
FM =[302 3.9 15.1 0.80 046/370 0.36]
Wang (1992) Eg. (32) Observer-based Hoo

KF =[0.2431/ 1.148 -0.3151]

Yi=[2.270 1.731 1.565 1.543 1.641 1.796 2.310]
T = 5.486 ‘
k =[04988 -0.5844 0.5960 0.1086]
li =[0.004316 0.05078 0.2546 0.686% 1]
KF = [0.4988 / 0.2546 - 0.5844] score = - 0.44
FM =[30.1 4.1 11.0 1.35 050/210 0.29]
Byms (1992) Eq. (45) Hoo and LTR
Yi=[0.94$5 2.899 1.149 1.777 1.466 1.833 1.850]
T =4,986
k =[0.1157 -0.5840 05255 0.1054]
I, =[0.01761 0.09822 05444 098319 1]
KF =[0.1157/ 0.5444 - 0.5840] score = - 0.62
FM =[23.3 3.0 142 0.88 0.51/3.56 0.30)
Adams (1992) Eq. (43) Heo and LQG

Y, =[1.737 1.588 1.530 1.737 1.675 2.463 1.9440]
T =7.624

k; =[0.2112 -0.9541 0.2667 0.3498]

1, =[0.009061 0.06986 0.2920 0.7274 1]

KF =[0.2112 / 0.2920 - 0.9541] score = - 2,50
FM =[24.8 3.4 28.0 1.25 031/259 0.32]

Wie (1992) Eq. (40} Heo
Yi=[0.9728 1.870 1.194 1.550 1.571 1.910 2.015] -
T =8.248 ‘ ‘
ki=[-0.1324 0.3533 0.6005 0.07280]
L =[0.5503 1.418 2.653 2.480 1]
KF =[-0.1324 /2.653 0.3533] score = 6.43
FM =[342 6.1 15.2 057 044/391 0.459]
Thompson (1995) Eq. (19) Classical / H, ‘
Yi=[1.929 2.627 1.563 1.552 1.451 2.543 2.020] %
T =6.263 :
lci =[0.3263 -0.4548 0.4985 0.07960] !
li =[0.002675 0.03914 02915 0.7787 1]
KF =[0.3263/ 0.2915 - 0.4548] score = 7.36
FM=[353 60 14.5 0.76 0.45/2.81 042]

Thompson (1995) Eg. (27) Improvement of Wie's solution
Y, =[1.026 1.805 1.252 1.451 1.715 2.838 2.120]

T =7.908

k, =[-0.09162 0.006688 0.5380 0.06803]

I =[03249 09232 1.909 2.082 1]

KF ={-0.09162 / 1.909 0.006688] score = 7.66

FM =[31.7 6.1 149 0.56 0.37/2.53 042]
Thompson (199 . (28) Minimum-phase

Y, =[0.8837 1.957 1.169 1.518 1.610 1.796 2.145]

T =8.157

k, =[0.7116 0.7131 0.08742]

1, =[0.7881 1.839 3.278 2.872 1]

KF =[0/3.278 0.7116] , score = 6.16

FM =[336 6.1 13.6 0.59 0.52/ 037]
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8. CONCLUSIONS

The major results of this paper are as follows;

(1) The outline of the coefficient diagram method (CDM) is
briefly explained. The CDM is an algebraic approach using
only polynomials, where the coefficient diagram is utilized as
a vehicle to collectively express the important features of the
system, and an improved version or Kessler's standard form
and the stability condition of Lipatov constitute the
theoretical basis.

(2) In order to evaluate the effectiveness of CDM, a
controller for problem 1 and 2 is designed .The result is better
or comparable to the best design of H, or Hoo control ,

(3) By theoretical analysis, the trade-off among require-
ments is clarified. It is made clear that solution like CDM-4
or one by Thompson is the only possible solution to satisfy
the requirement.

Although CDM is a powerful 100l for control system design
at this stage, further research is needed to make it effective to
Multi-Input-Multi-Output system, and to make use of it for
design of adaptive control systems
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