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Abstract: A controller design method, called Coefficient Diagram Method (CDM), is
introduced. By this method the simplest controller to satisfy the specification can be
designed efficiently. The designer can design the controller and the characteristic

. polynomial of the closed-loop system simulianeously taking a good balance of stability,
response, and robustness. Copyright@©1998 IFAC
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1. INTRODUCTION

In control system design, sensors, actuators, and
controllers are considered as the three major
components of the system. However design theory
must be viewed as the fourth major component,
because it affects the controller complexity greatly.
Thus theory must be evaluated for its effectiveness in
practical application and not for its mathematical
authenticity.

All the control system design for linear time
invariant dynamic system boils down to proper
selection of the characteristic polynomials
(denominator polynomials) and proper selection of
numerator polynomials for concerned input-output
refations. When these polynomials are properly
selected, the design of controller transfer function is
straight forward, and requires only simple
mathematics. The proper selection of the
- characteristic polynomial is not difficult, if only
stability and response are to be satisfied, but it
becomes complicated when robustness issue is
present. The coefficient diagram method (CDM)
(Manabe, 1991) is an answer to this problem.

The paper is organized as follows. In Section 2, a

simple design example is introduced to give the total
picture of CDM. The historical background of CDM
and its comparison with other control theories are
given. In Section 3, basics of CDM, such as
mathematical relations, the coefficient diagram, and
stability, are given. In Section 4, the general design
methodology of CDM is explained with example.

2. BRIEF DESCRIPTION OF CDM

2.1 Simple Example
In order to give the general picture of CDM, a simple

design example is given. Fig. 1 is a generic block
diagram for a DC motor position control, where
position y and velocity v are sensed. The problem is
to find velocity gain k, and position gain k.

From Fig. 1, the plant equation is obtained in a
differential equation form, where s = d/dt.

(0255 + 1255+ 5)y=u 1
The controller equation is derived as follows.
u=koy,~Ck,s+kg)y )

By eliminating v, the closed-loop equation is derived.
[0.255°+ 12557+ ¢k, + D s+ kol y =koat f, ()
The term preceding y is the characteristic
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polynomial denoted as P(s). Thus
P(s) =0255+ 1255 + (k, + 1) s+ &, )

:}: a,s'

For stability, all coefficient a, must be positive, and
the Routh stability condition, a, a, > a; &, must be
satisfied. This leads to the the following condition.

ky>0., ky>02ky~1 (5)
The stability region is shown in Fig. 2a, but, for the
controller design, specific values for k, and k;, must
be determined.

As will be explained later, stability index Y, aud
equivalent time constant © are defined as follows.
v,=atl(a;,,a,_), i=1~n-1 (6a)
T=a,/a, (6b)
From Egs. (4) (6a) (6b), a, and T can be expressed in
terms of v, as follows,

ay=1+k, =all(a;y,) =625y, (7a)
ay=ko=ajl(a;v,)=3125/(y3y)  (Th)
©=027,y, (79)

From many design experiences and analytical works,
the best choice of stability index is found 1o be

=k, vi1=02 2.5], ®

This leads to the following design resuits.
a;=[a, a, a, ag]=1[1 125 3.125 3.125]) (%a)
k, =Tk, ko]=[2.125 3.125] (9b)
=1 (Yc)

The settling time t_ is about 2.5 . For this design t,
is about 2.5 sec. Sometimes it may not be necessary
to have such fast response. Then increase Y, while
keeping Y | = 2.5 until a proper T is obtained. In this
case, the results are

a,=[025 125 625/, 12543 (103

k,=[(625/, - 1) 125~} (10b)

=05y, (10c¢)
By eliminating v, from Eq. (10a) and using Egs (7a)
(7b) the relation between k, and k, is obtained.

ko=032(1+k)° (11)

For Y, =6.25, 3.125, 2, the results are shown in Fig.

2a. This shows the parémeter values of controller to
be taken in the stability region.

The coefficient diagram is shown in Fig. 2b. The
ordinate is the coefficient a of the characteristic
polynomial in log scale and the abscissa is the order i
in the descending order. The convexity at i = 2 is
more conspicuous for large v, . Largery,

Fig. 1. DC motor position control
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Fig. 3. Step response

corresponds 1o greater stability as will be later
explained. The inclination at the right end
corresponds to the equivalent time constant T, which
is the measure of response speed.

The step response for these cases are shown in Fig. 3.
The waveforins take similar nice forms, because y , I8
kept to the optimum value of 2.5, and v , is larger
than 2. But the response speeds are different, and the
settling time 1_is found to be about 2.5 .

There are many measure for robustness. One of such
measures is the percent variation of a, to the percent

variation of k, .
Aa,la,=(k, la)(Ak, 1k )=068 (Ak,/k,) (12a)
Baylay=(kytag) (Akol ko) =1(Akylky)  (12b)

For this case, the percent variation of of a is less

than that of k, . This is the indication of good

robustness. This can be easily expressed in the
coelficient diagram by plotting k, and k;, with small
square symbols besides a, and aj (shown for y, =2).

Thus the cocefficient diagram such as Fig. 2b gives the
sufficient information about stability, response, and
robustness, the three major characteristics of control




systems. The stability is given by curvature, the
response is given by inclination, and the robustness is
given by the square symbols. From Fig. 2b, it is
understood that the increase of Y, corresponds to the
increase of robustness and stability with the sacrifice
of response. The fact that stability, response, and
robusiness are expressed in the single diagram is the
source of the effectiveness of CDM design.

2. 2 Historical Background

The CDM has developed over many previous ideas
and experiences in control system design. Some of
the important topics will be covered in the following.

The first treatment of the polynomial approach is "On
governors” by 1. C. Maxwell in 1868 and the Routh
stability criterion in 1877 (Franklin, 1994), where the
stability is analyzed using the coefficients of the
characteristic polynomial. However it keeps the
original form of stability criterion since then and no
further conspicuous effort has been made 10 make this
approach a workable design methodology until
Lipatov's work (1978).

In 1950s, the frequency response method was widely
used in control system design. During that period, it
was commonly recognized that, for good system
design, such criteria as the phase margin or gain
margin were not sufficient and the frequency
characteristics of the open loop transfer function
should have proper shape for a fairly wide frequency
range (Tustin, 1958).

Chestnut (1951) pointed out in his celebrated book
the importance of the relative location of break points
and the change of slope at these break points at the
straight line approximation of the Bode diagram (gain
only) of the open loop transfer function, and he
proposed a design method based on these findings.
His proposal was very practical, and has been widely
used in industry not only in 1950s but even today.

The rule of thumb, such that the straight line
approximation of the gain should intersect the 0 dB
line at the slope of -20 dB/dec., the change of slope
at each break point should be 20 dB/dec., and the
break points (time constant) should be separated at
least by factor of two, has been widely used in
practical design of simple control systems.

For such simple control system, the separation of
break points approximately corresponds to the
stability index. The rule of thumb that the break

points be separated at least by factor of two roughly
corresponds to specifying stability index ¥, to be
larger than two. The effort 10 make this rule
applicable fo more complex systems have led later fo
the adoption of stability index rather than the break

" points, and the adoption of the coefficient diagram

rather than Bode diagram, and finally culminated to
CDM.

Graham (1953) made intensive research to find the
relation between the coefficients of characteristic
polynomials and the transient responses, and proposed
standard forms for desirable characteristic
polynomials. This is commonly called ITAE
(Integral Time Absolute Error) standard form. The
values of coefficients of this standard form are similar,
but a little more oscillatory, compared to the proposed
values for CDM.

The shortcoming of ITAE as a design approach is due
to its lack of flexibility. Because it gives a standard
form for each order of characteristic polynomial, it is
very inconvenient when the order varies in the course
of design. Because it gives only one standard form,
and fails to show the way 1o modify it when
necessary, unreasonably unrobust controller can be
designed at certain occasion (Franklin, 1994, p. 534,
Ex. 7.21).

Around these time, Kessler (1960) made intensive
efforts 1o establish synthesis (design) procedures for
multi-loop control systems, and came out with a
standard form, commonly called "Kessler Canonical
Multi-loop Structure”. The proposed system is more
stable compared to ITAE standard form, and, for this
reason, has been widely used in the steel mill conirol.
However Kessler's standard form has unnécessary
overshoot of 8 %, and it was found that no-overshoot
condition can be easily obtained by a small
modification of making ¥y ; =2.5 instead of 2. The
CDM incorporates this modification.

Various researchers have helped to develop the similar
idea in Europe (Brandenburg, 1996) (Zaeh, 1987)
(Naslin, 1968). However the term "double ratio” is
vsed instead of stability index Y, because it is
simply the ratio of ratios of adjacent coefficients.

Yi=(a;la, )/, /a) (13)

Kitamori (1979) proposed an improved version of the
approach of Graham (1953), where the specification of
the characteristic polynomials was given only for the
low order, and the flexibility of design was greatly
improved.



Stability of control systems can be analyzed by Routh
or Hurwitz criterion utilizing coefficients of
characteristic polynomials. However in this way the
effect of the variation of coefficients on stability is
not clearly seen. Lipatov (1978) proposed sufficient
conditions for stability and instability. Because of its
simplicity, the relation of stability and instability
with respect 1o the coefficients of the characteristic
polynomials becomes very clear. These conditions are
integrated 10 the design procedures of CDM.

Especially it becomes a powerful design 1ool, when it
becomes clear that these conditions can be casily
shown on the coefficient diagram graphically. [t also
helps to clarify the meaning of stability index. Thus
the designer can graphically design the characteristic
polynomial on the coefficient diagram by fully
utilizing his intuition and experiences..

In control system design, classical contro} theory and
modemn control theory are widely used. But there is
another approach callzd algebraic approach, where
polynomials are used ‘astead of transfer functions
(Kailath, 1980, p. 306) (Chen, 1987) (Franklin,
1994, p. 564). This method does not say anything
about choosing the proper characteristic polynomial
for the given problem, and it is usually done by pole
assignment. However it greatly simplifies the
process of finding controller from the given
characteristic polynomial, and this process is adopled
in CDM.

As stated above, three features are added 1o the
previous work in deriving the CDM. The first
addition is the introduction of the coefficient diagram,
where the important features of the control system,
namely stability, response and robustness, are
represented in a graphical manaer, and the
understanding of the 1otal system becomes much
easiert The second addition is the improvement of the
Kessler's standard form, by which the 8 % overshoot
in Kessler becomes no overshoot. The third addition
is the introduction of the Lipatov's sufficient
condition for stability in the form compatible with
the CDM.

In this way, the CDM has developed from the crude
infancy (1991) 10 a sound control design theory with
many successful applications (Manabe, 1994a, 1994b,
1997a, 1998a). Tnaka (1992b) developed
independently similar approach by specifying o
parameter, which is the reciprocal of stability index,
with successful application to a gas turbine design
(Tanaka, 1992a). Hori (1994) used the stability index
for the design of two-mass resonant system. Such

trend will be further accelerated when the theoretical
foundation for the CDM (Manabe, 1997b, 1997¢)
becomes clearer

2. 3 Comparison with Other Control Theorics

The overview of the control design theories are shown
in Table 1. One group is the classical control and the
other is the modem control. In the middle, there is
the third group, called the algebraic approach. These
theories are characterized by the mathematical
expression used for the system representation, and the
way the design procecds to obtain the controller and
the closed-loop transfer function.

As to the mathematical expression, the transfer
fonction (classical control) and the state space (modem
control) are commonly used. The transfer function is
easy 1o handle, but it becomes maccurate when pole-
zero cancellation occurs dee to uncontrollable or
unobservable modes. The state space is accurate and
well-suited in machine computation, but manual
handling is very difficult,

The third method is the polynomial expression, where
the denominator and the sumerator of the transfer
function is handled as the independent entity. This
expression enjoys the easiness of handling of the
transfer function together with the rigor of the state
space, because it i equivalent to the state space
expression in control or observer canonical form.

The control system design problem can be stated as
foilows; When the plant dynamics and the
performance specifications are given, find the
controller under some practical limitation together
with the closed-Joop transfer function such that the
performance specifications and controller practical
limitation are reasonably satisfied.

Table 1 Overview of control design theories

Classification Design method Expression Approach
Classical ______ Freguency response deign Transfer Open-loop
control (Bode / Nyquist) function
e Roat-locuy design
Algebrale _____ Revthstability . Polyscmial
approach criteria
... CoefTicient di oly JE—
method
L Direct method e Polynomial
(Pole placement) l
Modern e Pole placement . State space Closed-ioop
control
e Optimnal COBUOL  meeereed]
LOR, LOG)
bemee s comitrest




One way 1o proceeds in design is to assume the
controller under practical limitation first, and then
obtain the closed-loop transfer function. After that, it
is checked against the performance specification. If it
is not satisfactory, modify the controller and repeat the
process. This approach is called as "Open-loop
approach” and maiuly vsed in the classical control
design.

The other way is to find the closed-loop transfer
function to meet the performance specification first,
and then obtain the controller. If the controller does
not satisfy the practical limitation, modify the closed-
loop transfer function and repeat the process. This
approach is called as "Closed-loop approach” and
mainly used in the modem control design.

The third approach is to specify partially the closed-
loop transfer function and controller at first, and decide
the rest of parameters by design. This approach is
called "Simultaneous approach"and used in CDM.

In CDM, the performance specification is rewritten in
a few parameters (stability index Y, and equivalent
time constant 7). These parameters specify the
closed-loop transfer function. Also these parameters
are related to the controller parameters algebraically in
explicit form. These features make this approach
possible in CDM.

Because of this simulaneous design nature, the
designer is able to keep good balance between the
rigor of the requirements and the complexity of the
controller. Thus the simplest controller 10 satisfy the
specification is realized without much difficulty.

The strength of CDM lies in that, for any plant,
minimum phase or non-minimum phase, the simplest
and robust controller under practical limitation can be
found. Such controller closely agrees with the
controllers which are accepted as good controllers in
practical application. It is worthy to notice that there
always exists a LQR controller with proper weights
and state augmentation, which is exactly the same as
the CDM controller (Manabe, 1998b).

Simnply stated, CDM is an algebraic approach over
polynomial ring in the parameter space, where a
special diagram called "Coefficient diagram" is used as
the vehicle to camry the necessary information, and as
the criteria of good design. An improved version of
Kessler's standard form and the stability condition of
Lipatov constitute the theoretical basis.

3. BASICS OF CDM

3. 1 Mathematical Relations

Some mathematical relations extensively used in
CDM will be introduced hereafier. The characteristic
polynomial is given in the following form.

PE)=a,s"+ ..+ a,5+ag= ;o a;st 14)
The stability index v, , the equivalent time constant
T, and stability limit y * are defined as follows.

yo=all(a;, a; ), i=1l~n-1 (152)
tT=a,/4a, (15b)
YR+ 1Y, Y =Y= (5¢)

From these equations the following relations are
derived.

alai=ala, YY) iz ) (16a)

a-':aoT‘/(Y«xtY;z_z---Yiz'zYil—‘) (16b)
Then characieristic polynomial will be expressed by
4y, T, and Y, as follows.

I (R} ) .
Ps)=a{{2 (I1 Vy/ )ws)y+es 411 (17)
i=2 =1 ;
The equivalent time constant of the i-th order T, and
the stability index of the j-th order v, ; are defined as

follows.
TEag e =T 0 Ya ) (18)

Uk )
Yi, & asz Ha,, ;a, )= [&I;Il i, -k‘li-ju)l]Yf 19)
Thus T can be considered the equivalent time constant
of the O-th order and v, is considered as the stability

index of the 1st order The stability index of the 2nd
order is a good measure of stability and is shown
below.

YiZ:a?/(auzai-z):Ye’»lY?Yi—l (20)

3. 2 Coefficient Diagram

When a characteristic polynomial is expressed as
P(s) = 0255+ 5%+ 257 + 257 + 5 + 0.2 | @n

then
a,=[025 1 2 2 1 02] (22a)
y,=02 2 2 23] (22b)
T=35 (22c)
y/=[05 1 09 05]. (22d)

The coefficient diagram is shown as in Fig. 4, where
coefficient a, is read by the left side scale, and stability

index Y equivalent time constant T , and stability
limit y,” are read by the right side scale. The T is
expressed by a line connecting 1 to <.
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Fig. 5b. Effect of v, ¢. Effect of ©
The stability index y, can be graphically obtained
(Fig. 5a). If the curvature of the a becomes larger
(Fig. 5b), the system becomes more stable,
corresponding to larger stability index y,. If the a,
curve is lefti-end down (Fig. 5¢), the equivalent time
constant t is small and response is fast. The
equivalent time constant T specifies the response
speed,

3.3 Stability Condition

From the Routh-Hurwitz stability criterion, the
stability condition for the 3rd order is given as

a,a,>d3dy (23a)

If it is expressed by stability index,
129> 1, (230)
The stability condition for the fourth order is given as
a; >, ha)ya, +@ay/ a))a, (24a)
2> 1s, (24b)

For the system higher than or including 5th degree,
Lipatov (1978) gave the sufficicnt condition for
stability and instability in several different forms. The
conditions most suitable to CDM can be stated as
follows;

“The system is stable, if all the partial 4th order
polynomials are stable with the margin of 1.12. The
system is unsiable if some 3rd order polynomial is
unstable.®
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Thus the sufficient condition for stability is given as

a, aiél .
a,> 112 2= a, ,+ == a, |

i i1 (253)
foralli=2~n-2_ (25b)
The sufficient condition for instability is given as
(262)
(26b)

y, > L12 y:,

a,, 4,54, ,4a,_,
Yo, vis1l, forsomei=1l~n-~2
These conditions can be graphically expressed in the
coefficient diagram. Fig. 6a is a 3rd-order example,
Point A is (a, 8, )5 and point B is (a, a 5. Thus if
A is above B, the system is stable. Point C is (v,

Y )03, Ifit is above 1, the system is stable.

Fig. 6b is a dth-order example. Point A is oblained

by drawing a line {from a, in parallel with line a, a,.

Similarly point B is obtained by drawing a line from
4y in parallel with line a, a,. The stability condition
is a8, > (A + B). The other condition isy, > v,".

Fig. 7a is a 6th order example (Franklin, 1994, p.
217), where

Py =5+ 45535 2555 4544 (27a)
By the first glance, the worst points are found fo be
la, a, a, a,], A < B, and the system is unstable.
Fig.7b is for another 5th order example (Franklin,
1994, p. 219), where

Pis)=s5+ 55+ 1157+ 2352+ 285+ 12 (27b)
By the first glance, the worst point is a, = 11.
because A = 23/5 =4.6, B =(5/23) 28 = 6,087, and A
+ B = 10.687, the sufficient condition for stability is




not satisfied. Also by looking at the figure, it is clear
that the sufficient condition for instability is not
satisfied either. In fact, this system is on the
boundary of stability and has imaginary roots at 1 j2.
It is very interesting to note that (a, / a,)%5 = 2.145

is approximately equal to these imaginary roots.

It is clear from Eqgs. (15¢) (25b) that, if all y, s are
larger than 1.5, the system is stable. Lipatov (1978)
proved, in the process of proving his main theorem,
that all roots are real negative, if all y; s are larger
than 4. From these observation it is safe 1o say that
Y, should be chosen in a region of 1.5 ~ 4.

3.4 Canonical Open-Loop Transfer Function

For a given characteristic polynomial, the closed-loop
transfer function T(s) is given as follows.

_QE) _bs"+.. +bis+b,
TGs) = P(s) 7 as*+ .. +as+a, (28)

The canonical open-loop transfer function for T(s) is
defined as the open-loop transfer function G(s), whose
unity feedback structure produces T{s). Then
G($) = Q) 1 [P(s) - (9]

= [‘_:20 bs/ [‘_:E as'+ .gb (a,-b)s1 (29)
When b, =4, for i =0 ~ k, the system type is said to
be (k + 1) (Franklin, 1994, p. 200). Furthermore, if
b, =0fori=(k+ 1) ~m, G(s) is called the canonical
open-loop transfer function of system type (k + 1) for

characteristic polynomial P(s), Thus the canonical
open-loop transfer function of system type 1, G (s),

for P(s) and its corresponding closed-loop transfer
function T, (s) are given as

GS)=ag/(@as"+ ... +a,5) (30a)
T($)=ay,/(a,s"+ .. +a,5+4ap) (30b)
For system type 2,
Gos) =(a,s+ag) (a,s" + ... +a,5%) (3la)
Tys)=(as+ag)/(a,s"+ ... +a;s+ay) (31b)

In this way, the canonical open/closed-loop transfer
function of a given system-type for a characterislic
polynomial P(s) is defined. These canonical transfer
functions are helpful to clarify the characteristics of

P(s).

Also break point @ is defined as
w;=a;la;,, , (32)
From Eg. (18), o, is found to be the reciprocal of the
equivalent time constant of high order T, . The ratio of
adjacent break points is equal to the stability index y .

Y=o w 33)
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Fig. 8. Canonical open-loop transfer function

Fig. 8 shows an example of Bode diagram for the
system type 1 and 2. The straight line approximation
(asymptotic representation) of Bode diagram used here
is somewhat different from the ordinary way, where
the break points are chosen from the poles and zeros
of the transfer function, and not the ratio of the
coefficients. However this way is more accurate and
the relation with the coefficient diagram is closer.

Thus it becomes clear that the coefficient diagram has
4 one-to-one correspondence with the straight line
approximation of Bode diagram of its canonical open-
loop transfer function.

3.5 Standard Form

From number of reasons o be explained later, the
recommended standard form for CDM is
Yoo~ Y272, n=25, (34)

When a;, = 0.4 and T = 2.5 are chosen, the
characteristic polynomial P(s) is obtained by Eq. (17)
in the following simple form.

F‘(s)-_-2‘('_'1)2&—_”5"1L 35

+27 %4275 4274 4 055 + 52+ 5+ 04

The step response of the canonical closed-loop transfer
function for the system type 1 and 2 for various orders
are given in Fig. 9 and 10. There is virtually no
overshoot for the system type 1.
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0

Fig. 10. System type 2



There is an overshoot of about 40% for system type
2. This overshoot is necessary, because the integral
of the error for the step response must become zero in
system type 2. It is also noticed that the responses
are about the same irrespective of the order of the
system. Because of this nature, the designer can start
from a simple controller and move to more
complicated one in addition 1o the previous design.
The settling time is about 2.5 ~ 3t. Many
simulation runs show that the standard form has the
shortest settling time for the same value of t.

The pole location is given in Fig. 11. They are listed
as follows.

2nd order -0.50000%j 0.38730
3rd order -0.62273 1§ 0.82004, -0.75454
4th order -1.00001+j 1.3764, -1.0000j 0.32492
5thorder -1.2084 1j 0.70569, -1.1377
~2.2228 ~j 2.5593
6th order -1.2867:+j 0.74408, -1.1827
-4.4569+j 5.2163, -3.3301
7th order -1.2843 1j 0.73912, -1.1805
-8.9003 +j 10.427, -5.8539, -4.5963
8th order -1.2843 +j 0.73925, -1.1806

-17.802 4] 20.853, -12.009, -8.3419
-4.2969 (36)

It is found that the three lowest order poles are aligned
in a vertical line and the two highest order poles are at
the point about 49.5 deg from the negative real axis.
The rest of the poles are on or close o the negative
real axis. For 4th order, all poles are exactly on the
vertical line.

It is interesting to note that a 3rd order system with
three poles on a vertical line shows a non-decreasing
feature for the step response or no overshoot. For
example, the transfer function G(s) is given as

G(s) = (B> +1) /IG5 +1){(s + D* + B3], (37a)
The first order derivative of its unit step response is
the inverse Laplace transform g(t) of G(s), given as

g =(1+1/pHe'(d-cos P, (37b)
Because g(t) is always positive and the unit response
is non-decreasing.

A 3rd order system with 2 = 1.5 gives a characteristic
polynomial P(s) such as
P(s)=5>+35*+455+25 (38a)
v=12 27 (38b)
For thisAcase, the overshoot is zero. If Y,=25asin
the standard form, three poles are not exactly on the

vertical line, and the complex poles are a little bit
closer to the imaginary axis with the result of a small

49.5 deg

1/

;;\;". _3}'
-3 -2 -1 0 1

Fig. 11. Pole Jocation

overshoot. The choice of ¥y, = 2.5 instead of 2.7 is
made for the reason of simplicity.

In summary, the standard form has the favorable

characteristics as listed below.

(1) For system type 1, overshoot is almost zero. For
system type 2, necessary overshoot of about 40
% is realized.

(2) Among the system with the same equivalent time
constant t, the standard form has the shortest
settling time. The setﬂing time is about 2.5~3t.

(3) The step responses show almost equal wave forms
irrespective to the order of the characteristic
pelynomials.

(4) The lower order poles are aligned on a vertical
line. The higher order poles are located within a
sector 49.5 degrees from the negative real axis,
and their damping coefficient ¢ is Jarger than
0.65. '

(5) The CDM standard form is very easy to remember.

In other words, the standard form seems to posses all

~ the characteristics of "good designs" found from

experience, such as no overshoot, short settling time,
and pole alignment on a vertical line.

Table 2 Comparison of stability index

standsrd stability index standard stability index

forms Yo mo Y2 on forms [ZBR T PR

o 4 2
Bisomial 3 3 ITAE 1424 2641
2.667 225 2667 1297 2039 2144
25 2 2 25 1568 1624 1779 2102

2 2

Butterwoith 2 2 Kessler 2 2

2 107 2 2 2 2

2 1618 1618 2 2 2 2 2

3 25

Bessel 24 2.5 DM 2 25

2222 1929 23 22 28

2143 175 1778 225 2z 2




For comparison, stability indices v 's for various

standard forms used in the control theory are given in
Table 2. It is found that CDM standard is similar to
Bessel at the low order, and become similar to
binomial at the high order.

3.6 Robustness Consideration

Robustness and stability are completely different
concepts. Simply stated, stability concerns where the
poles are located, and robustness concerns how fast
the poles move to imaginary axis for the variation of
parameters.

Stability is specified by the stability index v, of the
characteristic polynomial, but robustness is only
specified after the open loop structure is specified.

As an example, a 3rd order polynomial is given as
P(s)=055% +5s*+5+04 (39a)
If the canonical open-loop transfer function of system
type 1, G, (s), is assumed, it becomes
G(s)=041(05s>+5%+5)
For this case phase margin PM = 66.6 deg. For
system type 2, G,(s) becomes
GAs)=(s+04 /(055> +5
For this case, PM = 41.7 deg and robusiness is

decreased. If a non-minimum controller is used, the
open-loop transfer function G (s) may becomes as

G()=(~95+04) /(055> +52+10s)  (39d)

For this case, gain margin GM = 1.087 and
robustness is extremely poor.

(39b)

39¢c)

In other words, for the same characieristic polynomial
and thus for the same stability, the system can take
different robustness. It can become extremely
unrobust in some cases.

Conversely any system, which is extremely robust,
can be poor in stability. One example is the case,
where the open-loop transfer function G, (s) is given

as

Gy(8) =k (s + 0.99)  (s* + 5), (40a)
Its characteristic polynomial P, (s) is given as
Ps)=s>+ks?+s+099k {(40b)

This system is stable for any positive value of k (GM
= o0), and also PM = 90 deg. However the stability
is very poor as is clear from Eq. (40b).

Thus in designing the characteristic polynomial, more
consideration is required beyond the choice of Y, .

The traditional design principle of sticking to the
minimum-phase controller, wherever possible, with
the lowest possible order and with the narrowest
possible bandwidth is actually found to be a strong
guarantee of robustness.

In the actual design, the choice of y, =2.5,y, =Y, =
2 is strongly recommended due 10 stability and
response requirement, but it is not necessary to make
Y, ~Y, ., equal to 2. The condition can be relaxed as
Y,> 1.5y, 44)

With such freedom, designer have the freedom of
designing the controller together with the
characteristic polynomial, and he can integrate
robustness in the the characteristic polynomial with a
small sacrifice of stability and response. Because the
essence of the CDM lies in the proper selection of
stability indices y,'s, some experiences are required in
actual design, as is true in any design effort.

4. CDM DESIGN
4.1 Mathematical Model

The standard block diagram of the CDM design for a
single-input single-output system is shown in Fig.
12. A similar block diagram for multi-input multi-
output system can be obtained, but for reasons of
simplicity, it will not be treated here.

The plant equation is given as
Ay x=u+d (45a)
y=B,s)x (45b)
where u, y, and d are input, output, and disturbance.
The symbol x is called the basic state variable. Ap(s)
and Bp(s) are the denominator and numerator
polynomial of the plant transfer function Gp(s).

It will be easily seen that this expression has a direct
cormrespondence with the control canonical form of the
state-space expression, and x comrespoads to the state
variable of the lowest order. All the other states are
expressed as the derivatives of x of high order. This

Controller Plam

Yo!

:

Bi5) [ -

Fig. 12. CDM standard block diagram



form will be called the right polynomial form
hereafter, because it corresponds to the right co-prime
factorization of the plant transfer function.

Controller equation is given as

ALY u=B,s) y,~BLs) (y+n), (46)
where y_and n are reference input and noise on the
output. A (s) is the denominator of the controller
transfer function. B(s) and B (s) are called the
reference numerator and the feedback numerator of the
controller transfer function. Because the controlier
transfer function has two nuinerators, it is called two-
degree-of-freedom system.

This expression corresponds to the observer canonical
form of the state-vpace expression. This form will be
called the left polynomial form of the controller
transfer function.

Elimination of y and u from Eq (46) by Eqgs. (453, b)
gives
P(s)x=B8) y,+ As)d ~Bs) n (47a)
where P(s) is the characteristic polynomial and given
as
P(s)= A(5) A (5) +B(5) B(5), (47b)
In a similar manner, equation for y and u are obtained.
PE)y=B ) [Bs)y, + A(s)d-Bs)n] (47c)
PsYu=A ) [B,(5) y,-Bs) n] —B(s) B(s) d
‘ 47d)
Because this system has 3 inputs and 3 outputs, there
are 9 transfer functions. But these are related each
other. Four basic relations are selected, namely

P(s) x=P(0) v, (48a)
P(s) y=B,(s) B(s) y, (48b)
P(S)y=B,(s)A(5)d (48c)
P(s) (~u)=B(s) B,(s)d, (484)

Eq. (48a) is the response of x to ¥y, when B (s) = P(0),
and it corresponds to the canonical closed-loop transfer
function of system type 1 for P(s). This equation
specifies the characteristic polynomial, and it is a very
good measure of stability. Erq. (48b) is for the
command following characteristics. Eq. (48c) is for
the disturbance rejection characteristics. Eq. (48d)
corresponds to the complementary sensitivity function
T(s), and it is useful for checking the robustness. In
the CDM design, these four basic relations are used
for performance specification..

4.2 Analysis of the specification

When the performance specifications are given, they

must be modificd to the design specifications. In
CDM, the design specifications are as follows.

{1) The equivalent time constant T

(2) The stability indices y, for the higher order terms.
The stability indices for the lower order terms are
already specified.

(3) The high frequency attenuation characteristics.

(4) The low frequency disturbance rejection
characteristics.

The items (1) and (2) specifies the characteristic
polynomial. The controller is said to be the order
m/n, if the order of feedback numerator is m and the
order of denominator is n. The item (3) (4) specifies
the controller structure, that is, the order m/n and
some parameter values.

Usually the rise time, the settling time, the
overshoot, and the peak time are used for the time
response specification. However from the CDM
design point of view, only the scttling time 1_ is
meaningful, because it gives upper bound of t, where
t, =2.5 ~3 1. The frequency response specifications
are used for the items (3) and (4).

4. 3 Design Example

Plant parameters are give as
A)=0255"+125 st (49a)
B(s)=01s+1 (49b)
A 2/2-order controller is to be designed, whose steady
state gain is to be 20 due to the disturbance rejection
characteristics specification. The controller should

have reasonably narrow bandwidth. The command
following characteristics of system type 1 is required.

Then the structure of the controller becomes as
follows.

A =L+ s+ 1 (°02)
Bisy=k,s*+k 5+20 (50b)
B(5) =20 (50¢c)

[n order to make the bandwidth narrow, the highest
denominator breakpoint of the controller is limited to
twice of that of the plant.

Lil,=2x125/025=10 (50d)
Eqgs (504, b, ¢, d) have only three degrees of freedom.
Thus only vy, =2.5,y, =Y, =2 can be specified. Y,
and T are determined as the result of design.




Now the Diophantine equation is derived as follows.
A(8) A (8) + B(3) B(5) = P(s) ='§) a,s'  (S1a)

a;=ag T Y, D (51b)

When Eqgs. (49a, b) (50a, b, c, d) are used in Egs.
(51a, b), the following matrix relation is obtained.

0375 0 0 ||y ] %4

135 01 0 ||, |_|9-025
I 1 01 217 a,-1.25
o o 1 |[k] {4 -1-2

(52)
a,=ag*i 125, ay,=ay0 ! 125
a,=agtt1 2.5, ag=20
By multiplying a row vector {-10/3 1 -0.1 0.01]
from the left to the Eq. (52), its left hand side
vanishes, and an algebraic equation in Tt is derived.
By solving the equation, © = 2.4248 is obtained.

Then all the other parameters are detenined by Eq.
{52). The result is as follows.

k. =[26.488 45.496 20] (53a)
1 =[1.4750 14.750 1] (53b)
a =[0.36876 5.5313 22.811 47.037

48.496 20] (53c)
Y, =[3.6371 2 2 2.5] (53d)
T = 24248 (53¢)
v, =[05 077494 0.9 0.5] (530
s, =-9.9385, -1.3679+j 1.3654,

-1.1628 +j 0.33004 (53g)

PM =45.764 deg (at 1.7714 rad/sec)
The vector values such as ki, li, ... , are shown in

descending order. s/'s are the closed-loop poles.

In this design, Y, =3.6371 is different from the

standard form, but the controller becomes simplec
The performance characteristics are shown in Fig. 13.
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Fig. 13. Performance characteristics

4.4 Summary of Design process

From the design example, the formal statement of the
CDM design problem will be summarized as follows;

"Given the plant polynomials, the limitation on the
equivalent time constant €, stability index Y and
the controller parameters, find the equivalent time
constant T, the stability index v , the characteristics
polynomial P{s), and the controller polynomials,

A (s), B(s) and B(s), such that the responses in Eqgs.
(48b) (48c)(48d) are satisfactory.”

The solution process will be as follows;

(1) Define the plant in the right polynomial form.

(2) Analyze the performance specifications and derive
design specifications for CDM.

(3) Assume the controller in the simplest possible
form. Express it in the left polynomial form.

(4) Derive the Diophantine equation and solve for
unknown variables.

(5) Make some adjustment to satisfy the performance
specification if necessary.

The nature of the problem is to solve the Diophantine
equation (Sla, b). If a, T, and y, are given
beforehand, the problem is exactly the same as the
pole allocation design problem. The solution is
straight forward, but there is no guarantee of
robustness. In the CDM, some of these values are to
be determined in the course of solution. The knowns
and unknowns are mixed in both sides of the equation.
The number of unknowns are not necessarily equal to
the number of equations. Egs. (S1a, b} are nonlinear.
Because of these reasons, the solution is not straight
forward.

There are three methods in the solution. The first
method is graphical one. When the coefficient
diagram for Ap(s) is drawn, the general structure of the
controller and the possible range of the equivalent
time constant T can be graphically obtained, after
some experience. The second method is to usc the
special design form. By filling this form
sysiematically, the solution can be obtained by hand
calculation. The third method is the computerization
of the second method. Special MATLAB M-files
have been developed for this purpose,

In the previous example, graphical method was used
to evaluate approximate value of ©. Actual design is
done by the second method. The third method is
much faster and extensively used in actual design.
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5. CONCLUSION

In this paper, the CDM is introduced.

(1) In CDM, the characteristic polynomial and the
controller are designed simultaneously with the
help of the coefficient diagram.

(2) The characteristic polynomial specifies stability
and response. The structure of controller guarantees
robustness. Thus a simplest controller, which
satisfies the stability, response, and robustness
requirements, can be designed with ease.

The CDM has a wide application besides designing a
satisfactory controller. When combined with LO
design, it gives the analytic method of selecting
weights (Manabe, 1998b). The adaptive control is
another field of application.

The CDM presented here is for SISO. The method
applies to SIMO or MISO, too. The exiension to
MIMO problem is left for future studies.
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