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Abstract. A controller design method, called Coefficient Diagram Method (CDM), is introduced.
By this method the designer can design the characteristic polynomial of the closed loop system
efficiently taking a good balance of stability, response, and robustness. By CDM, an unified
interpretation of various attitude controls of various controlled-bias-momentum satellites is made.
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1. INTRODUCTION

The purpose of this paper is to give an uniflicd
interpretation to various attitude controls of
controllcd-bias-momentum satcllite, where the bias-
momentum varics not only in magnitude but also in
dircction by the use of other whecls.

In order to give an unified interpretation, some kind
of fixed standpoint is necessary. The "Cocfficient
Diagram Mecthod" in control system dcsign is fairly
new and not well-known, but its basic philosophy
has been used in many ficlds of industry for more
than 30 years with successful application especially
in steel mill speed control.

The cocfficicnt diagram is a semi-log diagram where
the cocfficients of characieristic polynomials arc
shown in logarithmic scale in the ordinate and the
numbers of power corrcsponding to cach cocllicient
are shown in the abscissa. The degree of convexity
is a measure of stability. The general inclination of
the curve is a measure of response speed. The
variation of the shape of the curve is a measure of
robustness. Thus the three major characteristics of
control system, namely stability, response, and
robustness are shown graphically in a singlc diagram,
enabling the designer to make a balanced judgment in
the course of his design.

The power of the cocflicient diagram method (CDM)
lics in that it generates not only non-minimum phase
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controllers but also unstable controllers when
required. Unstable controllers are shown 1o be very
cflective in controlling such unstable plants as
inverted pendutums with limited number of sensors
{Manabe, 1994). LQG fails to produce a robust
controller for plant with flexibility (poles at the
vicinity of the imaginary axis) as pointed by various
authors (Edmunds, 1983, and Mills, 1992). CDM
produces very robust controllers in such cases. The
cxperience show that only well-designed Heo
controller can be equivalent to CDM controliers.

This paper will first explain the historical
background which constitutes the basis of CDM.
The heart of CDM is the design of the characteristic
polynomial, and much attention will be paid on this
subject. Finally various control laws for the attitude
control of satetlites will be compared from the view
point of CDM, and their specific fcatures will be
explained. A sct of control law which will be
considcred best from the view point of CDM is also
suggested.

2. HISTORICAL BACKGROUND

In 1950s, the {requency response method was widely
uscd in control system design. During that period, it
was commonly recognized that, for good system
design, such criteria as the phase margin or gain
margin were not sufficient and the frequency
characteristics of the open loop transfer function




shoutd have proper shape for a fairly wide frequency
range (Tustin, 1958).

Chestnut (1959} pointed out in his celcbrated book
the importance of the relative location of break points
and the change of slope at these break points at the
straight line approximation of the Bode diagram (gain
only) of the open loop transfer function, and he
proposed a design method based on these findings.
His proposal was very practical, and has been widely
used in industry not only in 1950s but even today.

The rule of thumb, such that the straight linc
approximation of the gain should intersect the 0 dB
line at the slope of -20 dB/dec., the change of slope
at each break point should be 20 dB/dec., and the
break points (time constant) should be scparated at
least by factor of two, has been widely used in
practical design of simple contro} systcms.

Because the position of these break points and the
coefficients of the characteristic polynomial have a
very close relation, and the specification of the former
is equivalent to that of the latter. Thus these design
philosophics constitute the basis of CDM.

Graham (1953) made intensive rescarch 1o {ind the
relation between the cocllicients of characteristic
polynomials and the transient response, and proposed
standard forms for desirable characieristic

polynomials. This is commonly called ITAE
(Integral Time Absolute Error) Standard Form. The
values of cocfTicients of this standard form arc similar,
but a little more oscillatory, compared 1o the proposed
valucs for CDM,

Around these time, Kessler (1960) made intensive
efforts 1o establish synthesis (design) procedures for
multi-loop contro! systems, and came oul with a
standard form, commeonly called "Kessler Canonical
Multi-loop Structure”. The proposed system is more
stable compared to ITAE siandard form, and, for this
reason, has been widely used in the steel mill control,
It virtually became the industry standard. The CDM
is simply the sophistication and gencralization of
Kessler's work. -

Subility of control systems can be analyzcd by Routh
or Hurwitz criterion utilizing cocfficicnts of
characteristic polynomials. However in this way the
effect of the variation of coefficients on stability is
not clearly secn._ Lipatov (1978) proposed sufficient
conditions for stability and instability. Becausc of its
simplicity, the relation of stability and instability
with respect to the cocfficients of the characteristic

polynomials becomes very clear. These conditions are
integrated to the design procedures of CDM.

In control system design, classical control theory and
modem control theory are widely used. But there is
other approach called algebraic approach, and Chen
(1987) proposed a simple design approach based on
this philosophy. His approach is basically
sophistication of the pole allocation method for closed
loop characteristic polynomials. Some of his idea ,
constitutes basic philosophy of CDM. Although
rational functions are commonly used in algebraic
approach, only polynomials are used in CDM. In
this way, design procedures are much simplified and
become more straight forward,

Simply stated, CDM is an algebraic approach using
only polynomials, where the coefficient diagram is
utilized as a vehicle 1o collectively express the
important features of the system, and an improved
version of Kessler's standard form and the stability
condition of Lipatov constitute the theoretical basis.

There are three features in CDM which naturally
follows {rom the above mentioned basic structure.
First, co-prime factorization forms rather than state
space representation or transfer function representation
are mainly used to express the mathematical model of
the plant and the controller, because these forms are
closely rclated to polynomials and, while very
compact in expression, they have the same rigor as
the state space representation. Secondly, closed loop
design approach rather than open loop design approach
is adopted, since in CDM the design of the
characteristic polynomial is of utmost importance.

Finally, guided search approach rather than design by
specification approach is adopted. The controller is
first assumed in the simplest possible form to satisfy
the basic specification, and gradually improved to
mect full specification. In that process the
specification itself is being improved kecping balance
between the necessity of the specification and the
complexity of required controller. This procedure
beecomes possible because the characteristics of the
system is clearly expressed in the coefficient diagram
and the cocfficients are explicitly connected to the
paramelters of the controller.

3. CHARACTERISTIC POLYNOMIAL

In CDM, siability index v, , equivalent ime constant
T, and siability limit y," play very important role.



They are defined from the coefficients of the
characteristic polynmials as follows;

Yi=a2/(a,,8.,) i=l1~nl M
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By use of these paramcters, the characteristic
polynomial is expressed as follows;

P(s)=ao [ {2 (1’1 Ly@s))+ts+1]
iw2 jm] T, (4)
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Thus the coefficients are
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Also stability index of hlgher order is defined as
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From these equations, a few important relations
among the coefficients and the paramelers arc obtained
as follows;
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When a characleristic polynomial is expressed as
P(s)=0.25s% +st+2s?+2s2+5+02 (13)

the cocfficient diagram is shown as in Fig. 1, where

cocfficient a, , stability index v, , cquivalent time
constant T , and stability limit ¥;" arc shown in one
figurc. When the curvature of a; curve becomes large,

the system become more stable corresponding o

larger v,'s. When the curve a, is left-cnd- down, the

equivalent time constant T is small and the response
is fast.

The stability conditions are summalized as follows;
By mathematical manipulation of Routh-Hurwitz
criterion, the slability condition for 4th and 3rd order
system becomes

Yi> v (14)
For the system higher than or including 5th degree,
the sufficient condition for stability and inswbilitity
is obtained by Lipatov (1978). The sufficicnt
condition for stability is that either of the following
two equations holds.

Y= L1127y i=1~n-1 (15)
Gia 1Y 05>147  i=1~n2 (16)
The sufficicnt condition for instability is shown to be
(oY, 05 <1 i=1~n-2 (an

In CDM, the recommendcd standard form is

Y1 =25, Yo =Y. 2% =Y, =2 (18)
The standard form has the favorable characteristics as
listed below.

(1) When the order of the numerator polynomial is
zero and the order of the characteristic polynomial is
equal or higher than four, the system‘has no
overshoot, Only negligible overshoot exists for the
second and third order.

(2) Among the system with the same equivalent time
constant, the standard form has the shortest settling
time. The seulling time is about 2.5 ~ 3 1.

(3) For the same equivalent time constant and the
unity numerator, the step responses of the standard
form show almost equal wave forms irrespective 10
the order of the characteristic polynomials.

(4) The characteristic roots of lower order have equal
decay characleristics with the almost equal negative
real paris and aligned on a vertical line. The
characteristic roots for higher order are located within
a scctor 50 degrees from the negative real axis, and
their damping coclficient { is larger than 0.64.

(5) The CDM standard form is very easy to remember.

In the actual design, the choice of Y, = 2.5, Y, =Y, =
2 is strongly recommended, but it is not necessary 10
make ¥, ~ ¥, ., equal to 2. The condition can be
relaxcd as

¥, > L5y a9
In such case, the roots of the higher order become
constant decay and the damping coefficient becomes
smaller. The robustness dccreases slightly, but it is
largely offset by narrower bandwidth, increase of
design flexibility, and lower order controller.
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Fig.1. Coefficient diagram
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Because the essence of the CDM lies in the proper
selection of stability indices v,'s, some experiences are
required in actual design, as is true in any design
effort.

4, COMPARISON OF CONTROL LAWS

Control laws previously suggested. Various control
laws are suggested for the attitude contro! of the

controlled-bias-momentum satellite (Manabe, 1981).
In a simplified form normalized by the nutation
frequency, the control system is shown as in Fig. 2.
The definition of notations are as follows;
¢, = the roll angle reference in radian
¢ = the roll angle in radian
u=h,/h_ = the ratio of the momentum of the yaw
wheel to the momentum of the pitch whecel
{minus pitch direction being positive)
d = momentum disturbance due 10 the body residual
momentum (this term is set to zcro for simplicity)

The open loop transfer functions G(s), stability
indices Y;'s, and closcd loop poles ;s are shown in
Table 1. The systcms from 1 to 4 arc proposed in
literatures. The systcms 5 and 6 are loosely named as
Zcro PID control. Zero PID control is a special PID
control, where the proportional gain is almost zcro.

d
u
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Fig. 2. Atitude control sysiem

Control laws derived by CDM. By use of CDM, the

atlitude controllers, with diffcrent features, for the
controllcd-bias -momentum satelliles can be derived in
a systematic manncr. From Fig. 2, the characteristic
polynomial is obtaincd as
P(s) =185 + 1, 8% + (I;+ 1) 8 + (1, + k;) s?

+ (1 +k)s+kg (20)
The absence of the |, term in Fig. 2 is duc to the
requirement that the roll angle crror must be zero for
the presence of momentum disturbance.

In Eq. (20), the paramcter k, plays a very imporiant
role. From Egs. (2) and (7), )
a =1+k =97 @n
ay=1+l=a,13/(y,7,? (22)

Thus for ¥y, =2 and y, = 2.5, by division of a, by a,
T=3536[(1+1)/(1 +k)]3 23)

The case where |y =0and k| = 0 is chosen as the

standard case. The equivalent time constant 1 is

3.536 for this case. If a system of faster response,

having the same stability, is required, k; must be

increased while 1, is kept to zero in order to make t

small. If the compensator of order n-m isdefined as a :
compensator whose denominator is order n and

numeralor order m, the compensator for this case is

order 2-2,

If a systcm of slower response is required, k; must be
decreased (o the negalive direction, maybe down to

- 0.5. Further decrease is not advisable because small
variation of k, may cause a large percentage change of
a,. In this case, increase of 1, is also helpful, as is
clear from Eq. (23). Thus the compensator for this
casc is order 3-2.

In order to rcalize a larger 15, the lcft most stability
index v, may be decreased to 1 from 2. This
sclection doubles the value of |;. When k, and ¥;'s are
given, 1, can be obtained from the following relation
derived from Eq. (8).

a2/ (a5 a,=(1+ L7 /(1 +k)l=74 Y3t Y2

(24)

Table 3 shows the control laws derived by CDM. The
k,'s are chosen to be 0, 1, -0.3333, and -0.5. They
are named as "standard”, "high gain”, "medium-low
gain“, and "low gain”. The former two systems are
the 4thorderand y;=[2 2 2.5], while the latter
twoare the Sthorderandy;=[1 2 2 2.5].

Examination of closed loop poles will reveal that, for
the same ¥,'s, the configuration of the poles does not
change; only the distances to the origin change in the
same proportion,

Although all systems have sufficient stability and
practically sufficient robustness, the higher the gain
k, is, the system is the more robust. However, the
higher gain system requires wider bandwidth, and
some caulion is necessary for the effect of noise.
Thus the system designers are requested to select
proper k; to meet to their specific requirements of
robustness and bandwidth,

Comparison of control laws. Many interesting
observations can be made by the comparison of Tables

1 and 2. First, striking similarity between Terasaki's
control law and CDM low gain is noticed. Although
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these systems enjoy the narrowest bandwidth, these
are least robust and become unstable for the loop gain
increase by factor of 2. They are stable for the gain
decrease. In essence, CDM low gain‘is nothing but a
sophistication of Terasaki's control law, in the sense
that shorter settling time and smoother response are
realized even with narrower bandwidth and with the
same degree of robustness, as shown in Figs. 3 and 4.

The second observation is that CDM medium-low
gain locks to be an improvement over Dahl and
Tsuchiya with respect to settling time, smoothness of
response, and robustness.

The third observation is that CDM standard is similar
to ID control if the gain k, is increascd by 1.414

_times. If such increase of gain is made, the
characieristic polynomials become almost the same.
In other words, ID Contro! can be interpreted as CDM
standard, where the gain k is reduced to 70 percent in
order to attain better robusiness at the increase of loop
gain. Although the response of 1D Control is more
sluggish, the degradation at gain increase by factor of
2 is very small. The comparison of the response is
shown in Fig. 5 and 6. Although ID control is a
simplification of skewed lead wheel, it is more close
to CDM Standard.

Some calculation reveals that the closed Toop pole
configuration of CDM medium-low and low gain can
not be attained in LQG design, if the positive
definiteness, or semi-definiteness (or the weight
matrix of states is to be observed. If LQG design is
to be used to produce the same pole configuration,
one of the following three methods (These arc
equivalent.) may be used.

(1) Choose an indcfinite weight matrix for states.
(2) Use proper cross product weight of states and the
plant input.

(3) Put a proper positive pre-feedback to the system
and apply the standard LQG.

In any case, the design becomes very complicated.
Experience shows thal it is always possible to find
better controllers by CDM, because of the limitations
imposed on the standard LQG, namely, the positive
definitencss or semi-definitencss of the weight matrix
of states.

Table 1 Comparison of control laws
1. Tergsakj

- 0.5s + 009375

Gis) =
(0.44445%+1.33335%4s)(5%+1)

Y, =[2.769 1174 2461 2], 1= 5333

s; = - 0.2583+j 0.2326, -1.9970, - 0.24341j 0.9029
2. Lebsock

G(s) =—=0.4694s + 0.0875

(1.4295%4+5)(s*+1) )

Y, = {0490 3.848 2.252], 1t = 6.065

s, = - 021714 0.1690, - 0.1328+j 0.8896
3. Dahl

G(s) = 0.312s%* 0.416s + 0.104
, (0.667s%+s)5%+1)

Y= {1.531 1.641 3.350], 1= 5.615
s;= - 02771, - 07307, -0.2457+j 0.8424
4. Tauchiya
G(s) =-0.43175%- 0.3796s + 0.1472
(0.11852+0.6055%+5)(s%+1)
Y, = [2.775 1993 1.550 2.522], 1= 4.215
s; = - 0.4424, - 1.8608, -2.1535, - 0.3352+j 0.7689

5. Skewed lead wheel]

G(s) = 0.3636s%+ 52+ 0072725 + 0.2

(0.36365%+8)(s?+1)

Y= [3.750 1.271 4.219], = 5.364

5, = - 0.2455, -2.7503, - 0.3773%j 0.8200
6. ID control

Gis) =52+ 0.07272s + 0.2

(0.36365%45)(s%+1)
Y= [2.017 1.733 4219], 1=5.364
s;= - 0.2551, - 1.371, - 0.5621+j 1.1210

1.

CDM standard
= 1.0606s2 + 0.2828
G(s)
(0.353652+s)(s1+1)

Y,=[2 2 25), t= 3.536

s;= - 0.7070+j 0.2294, - 0.7070+j 0.9734
2. CDM high gain

G(S) - ].7552+ s +0.8

(0.255%+s)(s3+ 1)

Y= [2225], t=25

8= - 1.000+j 0.3249, - 1.000+j 1.3764
3. CDM medivm-low gain

G(s) = 0.66665%- 03333 s + 13333
{0.33335340.6667s2+5)(s2+1)

y,=[1 2 2 25], 1=5
5,= - 0.4691+] 0.3624, - 0.4797, - 0.29114j 1.5128

4, CDM low gain
G( = - 0,5 s + 0.07071
{s3+1.414252+5)(s2+1)
%={12225], t=7.071
s;= - 0.3317+j 0.2562, - 0.3392, - 0.2058+j 1.0697
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5. CONCLUSIONS

The major results of this paper are as follows;

(1) The historical background and the outlinc of the
coefficient diagram method (CDM) are bricfly
explained. The CDM is an algcbraic approach using
only polynomials, where the coefficient diagram is
utilized as a vehicle 1o collectively express the
important {eatures of the system, and an improved
version or Kessler's standard form and the stability
condition of Lipatov constitute the theorctical basis.

(2) Systematic design is made for the attitude control
of controlled-bias-momentum satellitc by CDM,
where a single gain parameter k, is varicd as a
parameter. It is found that the Terasaki's control law
corresponds to CDM Low Gain case and ID Control
law to CDM Standard case.

It is also very impressive to note that Terasaki came
up 1o such a remarkable control law at an carly stage
of the space development and at the time when
analysis tools were not widely available as are today.
The author expresses his sincere gratitude to all space
pioneers like him. Without their toil and insight, the
present work would not have been possible
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