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Abstract: The Coefficient Diagram Method (CDM) is applied to the design of the normal 
acceleration control of dual-control-surface missile. It is shown that MIMO design problem 
(matrix Diophantine equation) can be decomposed into series of SIMO problems (scalar 
Diophantine equation). Feedback controller is designed step by step with CDM. The extra 
freedom in design, typical in MIMO system, is used freely to design feed-forward controller, 
whereby various system characteristics can be attained. Copyright c 2001 IFAC 
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1. INTRODUCTION 
 

There are two distinct problems, when algebraic 
approach is used for control system design, namely 
definition of the Diophantine equation (DEQ) and the 
solution of the equation. The former corresponds to 
the total design of the control system and the latter to 
the design of the controller for the system. 
 
However, in actual practice, these two problems are 
mixed. The designer starts from the incomplete 
specification of the closed-loop performance and 
vague definition of controller limitation, and by 
improving step by step finally ends up to the 
complete definition of the control system and the 
controller.   
 
The purpose of this paper is to show, by an example, 
the definition and solution cycle of the DEQ. The 
problem is the normal acceleration control of a 
dual-control-surface missile (Ochi, 1997), and it is 
solved by the coefficient diagram method (CDM),  
where the MIMO problem (matrix DEQ) is 
decomposed into series of SIMO problems (scalar 
DEQ), and each SIMO problem is solved by standard 
CDM procedure.  
 
This paper is organized as follows. In Section 2, the 
basics of CDM are explained. In Section 3, the 
mathematical model of a dual-control-surface missile 
is presented. In Section 4, the basic control structure 
is determined based on coefficient diagram analysis. 
In Section 5, a feedback controller is designed as a 
SIMO problem by CDM. In Section 6, various 
feed-forward controllers are suggested. In Section 7, 
the problems encountered in MIMO design are 
discussed.  

2. BASICS OF CDM 
 

2.1  Basic Philosophy of CDM 
 
The CDM is an algebraic control design approach 
with the following five features (Manabe, 1998b). 
(1) Polynomials and polynomial matrices are used 

for system representation. 
(2) Characteristic polynomial and controller are 

simultaneously designed. 
(3) Coefficient diagram is effectively utilized. 
(4) The sufficient condition for stability by 

 Lipatov (1978) constitutes the theoretical basis 
 of CDM (Manabe, 1999).  

(5) Kessler (1960) standard form is improved and 
used as the standard form of CDM. 

 
CDM design is based on the stability index and 
equivalent time constant as defined later. Thus for the 
specified settling time, a controller of the lowest 
order with the narrowest bandwidth and of 
no-overshoot can be easily designed. CDM can be 
considered as “Generalized PID”, because the 
controller can be more complex than PID, and more 
reliable parameter selection rules are provided. Also 
CDM can be considered as “Improved LQG”, 
because the order of controller is smaller and weight 
selection rules are also given (Manabe, 1998a). 
 
 
2.2  Mathematical Model 
 
The standard block diagram of the CDM design is 
shown in Fig. 1.  This diagram is valid to SISO, 
SIMO, and MIMO. In SISO, the variables and 
components are all scalars but in MIMO they are 
vectors and matrices of proper dimension. The plant 



 

 

equation is given as 
( )pA s x u d= +                (1a) 

xsBy p )(= ,       (1b) 
where u, y, and d are input, output, and disturbance.  
The symbol x is called the basic state variable.  
Ap(s) and Bp(s) are the denominator and numerator 
polynomial matrix of the plant. It will be easily seen 
that this expression has a direct correspondence with 
the control canonical form of the state-space 
expression, and x corresponds to the state variable of 
the lowest order.  All the other states are expressed 
as the derivatives of x of high order.  

 
Controller equation is given as 

))(()()( nysBysBusA crac +−= ,      (2) 
where yr and n are reference input and noise on the 
output.  Ac(s) is the denominator polynomial matrix 
of the controller. Ba(s) and Bc(s) are called the 
reference and feedback numerator polynomial matrix 
of the controller. Because the controller transfer 
function has two numerators, it is called 
two-degree-of-freedom system. This expression 
corresponds to the observer canonical form of the 
state-space expression.  
 
Elimination of y and u from Eq. (2) by Eqs. (1a, b) 
gives 

( ) ( ) ( ) ( )a r c cA s x B s y A s d B s n= + − ,     (3a) 
where A(s) is the closed-loop system polynomial 
matrix and given as 

( ) ( ) ( ) ( ) ( )c p c pA s A s A s B s B s= + .     (3b) 
The characteristic polynomial P(s) is given as, 

( ) det ( )P s A s= .      (3c) 
The input output relation is given as 
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Fig. 1.  CDM standard block diagram 
 
 
2.3  Basic Relations 
 
Some mathematical relations extensively used in 
CDM will be introduced hereafter. These relations 
will be freely used in later sections. The 
characteristic polynomial )(sP  is given in the 
following form. 
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The stability index γi, the equivalent time constant τ, 
and the stability limit γi

* are defined as follows. 
)(/ 11

2
−+= iiii aaaγ ,   1~1 −= ni ,       (6a) 

01 /aa=τ ,       (6b) 

11
* /1/1 −+ += iii γγγ ,      (6c) 

   nγ and 0γ are defined as ∞ . 

The equivalent time constant of the i-th order τi is 
defined in the similar manner as τ.  

1 /i i ia aτ +=        (7) 
By Eqs. (6a) and (7), 

1 1 1/ ( / )( / ) 1/i i i i i i ia a a aτ τ γ− + −= = ,        (8a) 

1 2 1/ / ( )i i i iτ τ γ τ γ γ γ−= = L .      (8b) 
By repeated use of Eqs. (7) ia is expressed by 

iτ and 0a . 
  011 aa ii τττ L−=        (9a) 
By Eq. (8b), this reduces to 
  2 2 1

0 1 2 2 1/ ( )i i i
i i ia a τ γ γ γ γ− −

− −= L , 2i ≥ .      (9b) 
Then characteristic polynomial is expressed by 0a , 
τ , and γi as follows. 
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The sufficient condition for stability and instability 
constitutes the theoretical basis of CDM. It states as 
follows. 
 
"The system of any order is stable, if all the partial 
4th order polynomials are stable with the margin of 
1.12.  The system is unstable if some partial 3rd 
order polynomial is unstable." 
 
Thus the sufficient condition for stability is given as     
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*12.1 ii γγ > , 2~2 −= niallfor .    (10b) 
The sufficient condition for instability is given as 

121 −++ ≤ iiii aaaa ,      (11a) 
    11 ≤+ ii γγ , 2~1 −= nisomefor .    (11b) 
 
These conditions are graphically expressed in the 
coefficient diagram, and the designer can intuitively 
assess the stability of the system.  Fig. 2a is a 
4th-order example.  Point A is obtained by drawing 
a line from a4 in parallel with line a3 a1.  Similarly 
point B is obtained by drawing a line from a0 in 
parallel with line a3 a1.  The stability condition is a2 
> (A + B).  The other condition is γ2 > γ2

*. Fig. 2b is 
a 3rd-order example.  Point A is 0.5

2 1( )a a and point 
B is 0.5

3 0( )a a .  Thus if A is below B, the system is 
unstable.  Point C is 0.5

2 1( )γ γ . If it is below 1, the 



 

 

system is unstable. 
 
In CDM, the following stability indices are 
recommended. 

1 3 2 1... 2, 2.5nγ γ γ γ− = = = = =        (12a) 
For more relaxed form, with very small sacrifice of 
stability, 

*1.5 , 1 ~ 4i i i nγ γ> = −  
3 2 12, 2.5γ γ γ= = = .               (12b) 

In these cases, the step response of Eq. (4) has no 
overshoot, and the settling time is about 2.5~3τ . 
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3.  MATHEMATICAL MODEL OF 
DUAL-CONTROL-SURFACE MISSILE 

 
The dual-control-surface missile is sown in Fig. 3.  
This example is selected from an open literature 
(Ochi, 1997). This missile has length of 5 m. The 
operating condition is 10,000 m in altitude and 3 M 
(900m/sec) in speed. The required normal 
acceleration is 25 g or about 250 m/sec2. The state 
equation is given as 

0.746 900 240 240 0 0
0.0532 0.572 155 191 0 0

0 0 100 0 100 0
0 0 0 100 0 100

0.746 0.0991 240 240 0 0
1/ 900 0 0 0 0 0
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       (13) 
where w is the downward speed in m/sec; q is the 
pitch rate in rad/sec; δf and δr are the deflection of 
the front and rear control surfaces in rad; a is the 
normal acceleration in m/sec2; α is the angle of 
attack in rad and defined as w/U, where U is the 
forward speed. The actuator dynamics is represented 
by a time lag of 0.01 sec, and control inputs are uf  
and ur.  
 
The simplified model for control design is deduced 
from this model. First, the actuator dynamics is 
neglected. 

,f f r ru uδ δ= =       (14a) 
Then virtual input ua is defined as 
 a f ru u u= + .       (14b) 
Then 

f a ru u u= − .      (14c) 
By Eqs. (14a, b, c), the design model is derived as 
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For easier manipulation, MATLAB style expression 
of vector is employed, where a column vector [1 3 
6]T is represented as [1; 3; 6]. Then the polynomial 
matrix expression is given as 

( )[ ; ] [ ; ]m u a rA s w q B u u= , 
[ ; ; ] ( )[ ; ]ma q B s w qα = , 

0.746 900
( )

0.0532 0.572m

s
A s

s
+ − 

=  − + 
, 

900.0991
( ) 0 1

1/ 900 0
m

s
B s

− 
 =  
  

, 

[ ]240 0 ; 155 346uB = − − .         (16)  
CDM-standard polynomial matrix model is obtained 
as 

1 1( )[ ; ] [ ; ]p a rA s w q u u= , 
1 1[ ; ; ] ( )[ ; ]pa q B s w qα = , 

1
1 1 1[ ; ] [ ; ]uw q B w q−= ,  1 [ 240 0;0 346]uB = − − , 

1 0.0041667 3.75w w α= − = − , 
1 0.0028902q q= − , 

1
1( ) ( )p u m uA s B A s B−= , 
0.746 1297.5

0.44798 0.29729 580.68
s

s s
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1( ) ( )p m uB s B s B= . 
240 311430
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Fig. 3.  Dual-control-surface missile 

 
 

4.  CONTROL STRUCTURE DESIGN  
 

The purpose of control is to make the normal 
acceleration a  to follow the command ra .  Thus 
the number of main output is only one, but there are 
2 inputs and 3 outputs, and excessive freedom is left 
to designer. In order to determine the basic control 



 

 

structure, the 6 input-output relations are derived as 
[ ; ; ] [1/ ( )] ( ) adj ( )[ ; ]pd p p a ra q A s B s A s u uα = , 

2( ) det ( ) 1.3180 47.453pd pA s A s s s= = + − , 
( ) adj ( ) [ ; ; ]p pB s A s baa bar bra bqr b a b rα α=  

2240 152.64 92586,
34.289 232330,

baa s s
bar s

= + +
= − −

 

  155 102.86, 346 258.12bqa s bqr s= + = − − , 
0.266667 154.85, 346b a s b rα α= − + = − .  (18)  

These result are obtained by Polynomial Toolbox 
(Kwakernaak, 2000); These polynomials are shown 
in the coefficient diagram of Fig. 4, where the 
coefficient of si is multiplied by 10i  for convenience. 
The minus value is indicated by (-).  
 
For denominator Apd(s), the 1st order coefficient is 
too small and the 0th order coefficient is negative. 
These two coefficients must be modified by the 
feedback. The 1st order coefficient can be modified 
by proper feedback involving bqa and bqr. Because 
these two signals are almost alike, either of them can 
be used.  The 0-th order coefficient can be modified 
by bar , b aα , and b rα . However baa  can not 
be used, because it affects both 2nd and 0-th order. 
 
From this analysis, the most reasonable feedback 
control is to control ur  by a  and q, while keeping 

au  equal to zero. 
 
The signal a  and α  are similar in nature.  Since 
a  is necessary for control anyway, there is no need 
for α  in feedback control. As explained later, α  
can be controlled effectively by feed-forward control. 
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Fig. 4.  Denominator and numerator polynomial 
 
 

5.  FEEDBACK CONTROL DESIGN 
 

By making au = 0, the plant becomes a SIMO 
system and expressed as 

[ ; ; ] [1/ ( )][ ; ; ]pd ra q A s bar bqr b r uα α= .   (19a) 
The natural choice of controller is a PID controller 
with the feedback of q and a  such as 

0 2 1 0[ ( ) ]r rsu k a k sq k s k a= − + + .          (19b) 
The block diagram is shown in Fig. 5.  From Eqs. 
(3b, c), the characteristic polynomial P(s) becomes 
   2 1 0( ) ( ) ( ) ( ) ( )pdP s sA s k s bqr k s k bar= + + +  

3 2
2 1 0s a s a s a= + + + .            (19c) 

This is a 3rd order system, and γ2 and γ1 are chosen 
as the standard value.  

2 12, 2.5γ γ= =                  (20a) 
Because the neglected actuator dynamics has time 
constant of 0.01 sec, the good value of τ2 is 0.02 sec, 
twice as large. By Eq. (8b), 

0.1τ = .                          (20b) 
Then by Eq. (9b), 

2 1 050, 1250, 12500a a a= = =      (20c) 
By solving Diophantine equation, Eq. (19c), 
controller parameters are obtained as 

2 10.140162, 0.0054209,k k= − = −

0 0.053803k = − .                    (20d) 
The solution is easily obtained by CDM CAD (MSS, 
2000). The coefficient diagram is shown in Fig. 6. 
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Fig. 6.  Coefficient diagram of SIMO design 

 
 

6.  FEED-FORWARD CONTROL DESIGN 
 

The closed-loop polynomial matrix equation, such as 
Eqs. (1b) and (3a), can be obtained from Eqs. (17) 
and (19b) as 

( )[ ; ] ( )[ ; ]a a rA s q B s u aα = , 
[ ; ; ] ( )[ ; ]pa q B s qα α= ,                      



 

 

( ) ( ) ( ) ( ) ( )c p c pA s A s A s B s B s= + , 
( ) [1 0;0 ]cA s s= , 

[ ]1 0 2( ) 0 0 0; 0cB s k s k k s= + , 

0( ) [1 0;0 ]aB s k= .                 (21) 
Then as Eqs. (17) and (18), six input-output relations 
are obtained as 

[ ; ; ] [1/ ( )] adj ( ) ( )[ ; ]a a ra q P s A s B s u aα = , 
3 2( ) det ( ) 50 1250 12500P s A s s s s= = + + + , 

11 12 21 22 31 32adj ( ) ( ) [ ; ; ]aA s B s b b b b b b= , 
3 2

11 240 11792 92586b s s s= + + , 

12 1.8448 12500b s= + , 
2

21 295.15 4364.9b s s= − − , 

22 18.616 13.887b s= + , 
2

13 0.266667 308.29 4468.3b s s= − − − ,  

32 18.616b = .                        (22) 
When only a  is considered as output, relation 
becomes  

11 12[1/ ( )]( )a ra P s b u b a= + .          (23a) 
The polynomial b11 is expressed as 
    3 2

11 240( 49.132 385.77 )b s s s= + + .      (23b) 
The 3rd and 2nd order coefficients are very similar to 
those of P(s). The polynomial b12 is almost equal to 
P(0). Now a feed-forward controller is assumed as 

*
1 1[ ; ] [1 0;240( 1) 1][ / 240; ]a r f ru a T s a e a= + . 

                                   (23c) 
Eq. (23a) becomes 
  *

11 1 12 12 1[1/ ( )][{ / 240 ( 1) } ]f ra P s b T s b a b e a= + + + . 
(23d) 

When T1 is selected as 
1 0.0689908T = ,                     (23e) 

the term preceding fa becomes 
 11 1 12/ 240 ( 1)b T s b+ +  
   3 249.132 1250 12500 ( )s s s P s= + + + ≅ .   (23f) 
Also define fa such that 

    *( ) ( )f f f rA s a B s a= , 

1(0) / (0) 1f fB A e= − .                 (23g) 
Then Eq. (23d) becomes 

*
1[ ( ) / ( ) (0) / ( )]f f ra B s A s e P P s a= + .     (24a) 

The steady state value of a  defined as ssa is  
*

ss ra a= .                           (24b) 
The steady state value of au defined as assu is 
obtained from Eqs. (23c, g) as 
     *

1(1/ 240)(1 )ass ru e a= − .              (24c) 
The steady state value of α defined as ssα is 
obtained from Eq. (15) as 

*
1(1/ 671.4)ss re aα = .                  (24d) 

 
Thus a controller of the following characteristics is 
realized. 

(1) The normal acceleration a  follows its  

command *
ra . 

(2) The transient can be freely adjusted by 
 ( ) / ( )f fB s A s . 

(3) The steady state value assu  and ssα can be 
freely adjusted by 1e . 

                
The combined feedback and feed-forward controller 
will be expressed as 

* * *( )[ ; ] ( ) ( )[ ; ; ]c a r a r cA s u u B s a B s a q α= − , 
*

0 1( ) [ ( ) 0; 240 ( 1) ]c fA s A s k T s s= − + , 
    1 0 2( ) [0 0 0; 0]cB s k s k k s= + , 

*
0 1( ) [ ( ) / 240; ]a fB s B s k e= .              (25) 

 
Simulation is performed with the designed controller 
Eq. (25), where the exact model Eq. (13) is used. 
Three examples are considered, and the results match 
to the expectation. The first example is ”No 
feed-forward control”, where 
    1( ) 1, ( ) 0, 1f fA s B s e= = = .           (26a) 
The second example is  “Quick response feed- 
forward”, where 
  2

1( ) 32 365, ( ) 16 , 1f fA s s s B s s e= + + = = .  (26b) 
The third example is “Reduced angle-of-attack 
feed-forward”, where 

1( ) 25, ( ) 12.5, 0.5f fA s s B s e= + = = .   (26c) 
 
 

7.  MIMO DESIGN 
 

Various aspects of MIMO design will be discussed. 
The topics are as follows. 

(1) The mathematical difficulties in MIMO design 
(2) Excessive freedom 
(3) CAD for polynomial 
(4) Design procedure 

Simply stated, the mathematical definition of MIMO 
design may be as follows. 
“For given Ap(s), Bp(s), and P(s), find Ac(s) and Bc(s) 
such that 

( ) ( ) ( ) ( ) ( )c p c pA s A s B s B s A s+ = ,       (27a) 
det ( ) ( )A s P s= .                    (27b) 

The first difficulty is that A(s) can not be determined 
from det A(s). There are too much freedom left to 
designer in assigning A(s) from det A(s). The second 
difficulty is that even though A(s) is determined, 
there is difficulty in solving DEQ (27a). DEQ can be 
expressed by the linear relation between controller 
parameters and the parameters of A(s), but the 
number of equations is usually less than that of 
controller parameters, and matrix dimension is large. 
 
These difficulties may be called difficulty of 
excessive freedom. Excessive freedom is a basic 
nature of MIMO quite different from SISO. To use 
this freedom wisely, designers are required to have 
good design common sense based on practical design 
experience. 



 

 

 
In CDM application to MIMO, mathematical 
manipulation of polynomial matrix like addition, 
subtraction, multiplication, and inversion is required. 
Also solution of Diophantine equation must be 
expedited .  For these purpose, a good CAD for 
polynomial is essential and the recent development in 
this direction is very encouraging (Kwakernaak, 
2000).  
 
The MIMO design steps taken in this paper are as 
follows.  
(1) The plant model given in state-space is simplified 
 and expressed in polynomial matrices of right  

co-prime fraction form. 
(2) The transfer functions between various inputs and 

outputs are calculated, and the denominator and 
numerator polynomials are shown on coefficient 
diagrams. Appropriate input and output are 
selected for feedback control design, where the 
system becomes SIMO. 

(3) After the design, the feedback controller is 
  incorporated with the plant, and a new plant is 

defined. 
(4) Repeat Step (2)(3) until the desired characteristic  

polynomial is obtained. 
(5) Feed-forward control is designed with the unused  

excess freedom. 
 
By this procedure, Ac(s) and Bc(s) are designed step 
by step and excess freedom is taken care of at each 
stage. The closed-loop system polynomial matrix 
A(s) are finally obtained together with Ac(s) and Bc(s). 
Simultaneous design of closed-loop system and 
controller is an important feature of CDM. 
 
 

9.  CONCLUSION 
 

The major results of this paper are as follows. 
(1) At control structure design, selection of input and 

output is very important. For this purpose, the 
coefficient diagrams of denominator and 
numerator polynomials are found to be very 
effective. 

(2) MIMO problem (matrix DEQ) can be 
decomposed into a series of SIMO problems 
(scalar DEQ). The feedback control with desired 
characteristic polynomial can be effectively 
designed with this approach. 

(3) The excess freedom can be utilized for 
feed-forward control design, whereby various 
control characteristics can be easily obtained. 

(4) Effective CAD for polynomial matrix is essential. 
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