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Abstract: The normal acceleration control of dual-control-surface missile is a typical
MIMO problem, where various modern control design techniques are employed.
Coefficient Diagram Method (CDM), with proven effectiveness in SISO or SIMO control
design, has been applied to this MIMO problem. It is shown that MIMO design problem
can be decomposed into series of SIMO problems, and feedback controller can be
designed step by step with CDM. The extra freedom in design is used to design
feed-forward controller of various characteristics. The meaning of extra freedom typical

in MIMO system is clarified. Copyright © 2001 IFACs+
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1. INTRODUCTION

The normal acceleration control of the
dual-control-surface missile is a typical MIMO
(Multi-input-muiti-output) problem, where various
modern control design techniques are employed. The
Coefficient Diagram Method (CDM) is proven to be
effective in SISO (Single-input-single-output) or
SIMO problem (Manabe, 1998b). This paper shows
CDM can be applied to MIMO by decomposing the
problem into series of SIMO problems. Then each
SIMO problem can be solved by standard CDM
procedure,

Contrary to SISO case, too much design freedom is
left to designer in MIMO case, and to make wise
decision at the design becomes a difficult problem to
the designer. Serial solution of SIMO problem
greatly helps the designer to make such decision
wisely. By this way, the meaning of normal
acceleration control of the dual-control-surface
missile becomes much clearer compared with the
controller design by modern control.

This paper is organized as follows. In Section 2, the
basics of CDM are explained. In Section 3, the
mathematical model of a dual-control-surface missile
is presented. In Section 4, the basic control structure
is determined based on coefficient diagram analysis.
In Section 5, a feedback controller is designed as a
SIMO problem by CDM. In Section 6, various
feed-forward controllers are suggested. In Section 7,
simulation results are shown for these controllers. In
Section 8, the CDM design of MIMO is summarized.

2. BASICS OF CDM
2.1 Basic Philosophy of CDM

The CDM is an algebraic control design approach
with the following five features (Manabe, 1998b).
(1) Polynomials and polynomial matrices are used
for system representation.
(2) Characteristic polynomial and controller are
simultaneously designed.
(3) Coefficient diagram is effectively utilized.
(4) The sufficient condition for stability by
Lipatov (1978) constitutes the theoretical basis
of CDM (Manabe, 1999).
(5) Kessler (1960) standard form is improved and
used as the standard form of CDM.

CDM design is based on the stability index and
equivalent time constant as defined later. Thus for the
specified settling time, a controller of the lowest
order with the narrowest bandwidth and of
no-overshoot can be easily designed. CDM can be
considered as “Generalized PID”, because the
controller can be more complex than PID, and more
reliable parameter selection rules are provided. Also
CDM can be considered as “Improved LQG”,
because the order of controller is smaller and weight
selection rules are also given (Manabe, 1998a).

2.2 Mathematical Model

The standard block diagram of the CDM design is
shown in Fig. 1. This diagram is valid to SISO,
SIMO, and MIMO. In SISO, the variables and
components are all scalars but in MIMO they are



- vectors and matrices of proper dimension. The plant
equation is given as
A ()x=u+d (la)

y=8,(x, (1)
where u, y, and d are input, output, and disturbance.
The symbol x is called the basic state variable.
A(s) and B,(s) are the denominator and numerator
polynomial matrix of the plant. It will be easily seen
that this expression has a direct correspondence with
the control canonical form of the state-space
expression, and x corresponds to the state variable of
the lowest order.  All the other states are expressed
as the derivatives of x of high order.

Controller equation is given as
A (su=B_ (s)y, =B (s}y +n), 2)

where y, and n are reference input and noise on the
output, ALs) is the denominator polynomial matrix
of the controller. B,(s) and B.s) are called the
reference and feedback numerator polynomial matrix
of the controller. Because the controller transfer
function has two numerators, it 1is called
two-degree-of-freedom system. This expression
corresponds to the observer canonical form of the
state-space expression.

Elimination of y and u from Eq. (2) by Eqs. (lg, b)
gives
A(s)x = B,(s)y, + A.(s)d - B.(s)n, (3a)
where A(s) is the closed-loop system polynomial
matrix and given as
A(s)= A (s)A,(s)+ B.(5)B,(s5) . (3b)
The characteristic polynomial P(s) is given as,
P(s)=det A(s). (3¢c)
The input output relation is given as
x I
yl= .1-’—(1.9-) B, (s) | adj A(s)
u A4,(s)
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Fig. 1. CDM standard block diagram

2.3 Basic Relations -

Some mathematical relations extensively used in
CDM will be introduced hereafter. These relations
will be freely used in later sections. The
characteristic polynomial P(s) is given in the
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following form.
”
P(s)=a, "+ +as+a,= Za,s‘ 5
i=0
The stability index 7, the equivalent time constant 7,
and the stability limit %" are defined as follows,

vi=a @y a.), i=l~n-1, (6a)
t=ala,, (6b)
Vi =1V + 10, (6¢c)

Y, and ygare defined as oo,

The equivalent time constant of the i-th order 1, is
defined in the similar manner as 7.

T, =a,/4q 7
By Eqs. (6a) and (7),

1/t =(a, /aXa/a. )=1l7, (8a)

Tl=71-1;7'f=1/(71“'y171)~ (8b)

By repeated use of Eqs. (7) g4, is expressed by
T; andao.

=T 7q (%a)
By Eq. (8b), this reduces to
a; =4, 7! 1{Yiq ysz-z "'7?2 71‘-’) , 122, (9b)

Then characteristic polynomial is expressed by a,,
7, and % as follows.

2 -l

P(s)=a,[{Q (T[] 7. )xs)}+2s 411 (%)

il  jwi

The sufficient condition for stability and instability
constitutes the theoretical basis of CDM. It states as
follows.

"The system of any order is stable, if all the partial
4th order polynomials are stable with the margin of
1.12, The system is unstable if some partial 3rd
order polynomial is unstable.”

Thus the sufficient condition for stability is given as

g, >1.12[ %=

G + a1, (108)
i+ i~
y,>1.12y,, forall i=2~n-2.  (10b)
The sufficient condition for instability is given as
8414 S A28, : (112)
YiuY: S1, forsomei=1~n-2. (1ib)

These conditions are graphically expressed in the
coefficient diagram, and the designer can intuitively
assess the stability of the system (Manabe, 1998b).

In CDM, the following stability indices are
recommended,

Yri = =Y =1 =2, % =23 (12a)
For more relaxed form, with very small sacrifice of
stability,

y,>1.5y,, i=n-1~4

Y=Y, =2, v, =25. (12b)
In these cases, the step response of Eq. (4) has no
overshoot, and the settling time is about 2.5~3t1.




3. MATHEMATICAL MODEL OF
DUAL-CONTROL-SURFACE MISSILE

The dual-control-surface missile is sown in Fig. 2.
This example is selected from an open literature
{Ochi, 1997). This missile has length of 5 m. The
operating condition is 10,000 m in altitude and 3 M
{900nvsec) in speed. The required normal
acceleration is 25 g or about 250 m/sec’. The state
equation is given as

wl [-0746 900 240 240 0 0 Y w]
g1 {00532 0572 .155. ~191 0 G || g
81| o 0 -100 0 100 o {5, |
51| o 0 0 -100 0 100{5,
a 0.746 0.0991 240 240 0 O |lu,
la ] [1/900 0 0 0 0 0]«

: (13
where w is the downward speed in m/sec; q is the):
pitch rate in rad/sec; & and §, are the deflection of
the front and rear control surfaces in rad; aq is the
normal acceleration in m/sec’; o is the angle of
attack in rad and defined as w/U, where U is the
forward speed. The actuator dynamics is represented
by a time lag of 0.01 sec, and control inputs are u,
and u,.

The simplified model for control design is deduced
from this model. First, the actuator dynamics is
neglected.

6, =u,, 8 =u, (14a)
Then virtual input u, is defined as

U, =u,+u,. (14b)
Then

uy=u,~u,. (14c)

By Egs. (14a, b, c), the design model is derived as
wi [-0746 900 -240 O

gl lo0s32 0572 155 346"
al=| 0746 00991 240 o || 7] a5
q 0 1 o o ||*™
al Lusoo o o o ¥

For easier manipulation, MATLAB style expression
of vector is employed, where a column vector [1 3
6]" is represented as [1; 3; 6]. Then the polynomial
matrix expression is given as

A (s)[wiql= B,[u,;u,],

(a;¢;0] = B, (s)[w; 4],

(5) = s+0.746  -900
T 00532 s+0.572)

-5 9000991
B(s)=| 0 Lo,
17900 0
B, = [—240 0; 155 —-346] . (16)

CDM-standard polynomial matrix model is obtained
as

A, ()w;q1=[u,4,1,
la;q;0]= B, ()W, 1,
[wiq,1=B;/[wiq], B, =[-240 0;0 —346],
w, = —0.0041667w = -3.75,
g, =-0.0028902¢ ,
A, (s)=B]'4,(s)B,,,
[ s+0.746 ~1297.5
7| 0.447985+0.29729 s—sso.ss] ’
B,(s)=B,(s)B,, .
2405 -311430

fl

0 ~346 |. a7
| -240/900 0

Fig. 2. Dual-control-surface missile

4. CONTROL STRUCTURE DESIGN

The purpose of control is to make the normal
acceleration g to follow the command a,. Thus
the number of main output is only one, but there are
2 inputs and 3 outputs, and excessive freedom is left
to designer. In order to determine the basic control
structure, the 6 input-output relations are derived as

la;q;2] =1/ 4,, ()] B, (s) adj 4, (s}[u,;u, ],

A, (s)=det4,(s)=s" +131805s—47.453,

B,(s) adj A4, (s) =[baa bar;bra bqr,bxa bor}

baa = 2405 +152.645 +92586,

bar =—34.289s ~ 232330,

bga=1555+102.86, bgr=~346s-258.12,

baa =-0266667s+154.85, bor=-346. (18)
These result are obtained by Polynomial Toolbox
(Kwakernaak, 2000); These polynomials are. shown
in the coefficient diagram of Fig. 3, where the

coefficient of s' is multiplied by 10’ for convenience.
The minus value is indicated by (-).

For denominator 4,4s), the lst order coefficient is
too small and the Oth order coefficient is negative.
These two coefficients must be modified by the
feedback. The st order coefficient can be modified
by proper feedback involving bga and bgr. Because
these two signals are almost alike, either of them can
be used. The O-th order coefficient can be modified
by bar, boa, and bar . However baa can not
be used, because it affects both 2nd and 0-th order.



From this analysis, the most reasonable feedback
control is to control u, by a and g, while keeping
u, equal to zero.

The signal ¢ and «a are similar in nature. Since
a is necessary for control anyway, there is no need
for o in feedback control. As explained later, a
can be controlled effectively by feed-forward control.
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100 ceff x10' /
(=) 17
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1000 fbar
=
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ceff x10' (')q\bqr ceff 210 bar P
1000 AN 100 ;
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100 10 {
Y
10 1
2 1,0 2 1 ;0
Fig. 3. Denominator and numerator polynomial

5. FEEDBACK CONTROL DESIGN

By making u, = 0, the plant becomes a SIMO
system and expressed as
[a;q;0]=[1/ A, (s)lbar; bgr; barlu,.  (19a)
The natural choice of controller is a PID controller
with the feedback of g and @ such as
su, = kya, ~{k,sq+ (ks + ky)al. (19b)
The block diagram is shown in Fig. 4. From Eqgs.
{(3b, c), the characteristic polynomial P(s) becomes
P(s) =s4,,(s)+ ks (bgr) + (ks + k) (bar)
=s'+a,s' +as+a,. (19¢)
This is a 3rd order system, and ¥; and 7 are chosen
as the standard value.

7. =2, 7,=235 (20a)
Because the neglected actuator dynamics has time
congtant of 0.01 sec, the good value of 7; is 0.02 sec,
twice as large. By Eq. (8b),

7=0.1. : (20b)
Then by Eq. (9b),

a, =50, a, =1250, a,=12500 (20c)
By solving Diophantine equation, Eq. (190),
controller parameters are obtained as

k, ==0.140162, Kk =-0.0054209,

k, =~0.053803 . (20d)

The solution is easily obtained by CDM CAD (MSS,
2000). The coefficient diagram is shown in Fig. 5.
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Fig. 5. Cocflicient diagram of SIMO design

6. FEED-FORWARD CONTROL DESIGN

The closed-loop polynomial matrix equation, such as
Egs. (1b} and (3a), can be obtained from Eqgs. (17)
and (19b) as

A(s)esq]= B, (5)[u,za,],
[a;q;a]=B,(s)eq],
A(s)=A4,(s)A,(s)+ B,(5)B,(s),
A(s)=[10;05],
B(s)=[0 0 0; ks+k, ks 0],
B,(s)=I1 G;0 k,]. (21)

Then as Egs. (17) and (18), six input-output relations
are obtained as

[a; g;@]=[1/ P(s)] adj A(s) B, (s)[u,;a,],
P(s) = det A(s) =" + 505 +12505 +12500,
adj A(s) B, () =[b, B3 by by by, by ],

b, =240’ +117925" +92586s,

b, =1.84485+12500,

b, =-295.15s" —4364.9s,

b, =18.6165+13.887,

b, =—0.266667s" ~308.295—4468.3,

b, =18.616. (22)
When only a is considered as output, relation
becomes

a=[1/P(s)}b,u,+b,a,). (23a)
The polynomial by; is expressed as

b, =240(s’ +49.132s* +385.775) . (23b)
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The 3rd and 2nd order coefficients are very similar to
those of P(s). The polynomial b,; is almost equal to
P(0). Now a feed-forward controller is assumed as

[u,;a,1=[1 0;240(T;s+1) 1l{a,/240;e4a;].
23¢)
Eq. (23a) becomes
a=[1/P(s)][{b, /240 +(T;s + b, }a, + b, ea;].

(23d)
When T is selected as

7, =0.0689908 , (23e)
the term preceding a, becomes
b,/240+(Tis+ )b,

=5 +49.1325% +1250s+12500 = P(s).  (23f)

Also define a, such that

Af(s)a/ = _r(s)a: ’

B (0)/ A, (0)=1~¢,. (23g)
Then Eq. (23d) becomes

a=[B,(s)! A (s)+eP(0)/ P(s)la,. (24a)
The steady state value of a definedas a,,is

a,=a,. (24b)
The steady state value of wu, defined as u,, is
obtained from Egs. (23c, g) as

u,, =(1/240)(1-¢)a, . (24¢)

The steady state value of « defined as a, is
obtained from Eq. (15) as

a, =(1/671.4)¢a; . (24d)

Thus a controller of the following characteristics is
realized.
(1) The normal acceleration a follows its
command a; .
(2) The transient can be freely adjusted by
B,(s)/ 4,(s).
(3) The steady state value wu,, anda, can be
freely adjusted by e, .

The combined feedback and feed-forward controller
will be expressed as

A ()[u,;4,]= B,(s)a; ~ B.(s)a; g:0],
A (s)=[A4,(s) 0;-240k,(T;s+1) 5],
B.(s)=[0 0 O ks+k, kys 0],
B (s) =[B,(s)/ 240; kye,] . (25)

7. Simulation

Simulation is performed with the designed controller
Eq. (25), where the exact missile model Eq. (13) is
used. Three examples are shown.

Ex 1. No feed- n
B,(5)=0, A (s)=1, g=1, a =300m/s".

The result is shown in Fig.6, The left-up figure is for
normal acceleration a, and left-down for pitch rate
g. The right-up figure is for the reference angle of
attack «, (solid line), obtained by Eq. (24d), and
angle of attack ¢ (broken line), The right-down
figure is for control surface control commands;
u, (solid line), u, (broken line), and u, (dotted line).
The a and a settle to the command value in 0.3
sec or 3¢ . The response is very smooth. Because
u, is zero, u, and u, swing to the opposite
direction. The maximum deflection is 0.28 rad or 16
deg.
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Fig. 7. Quick response feed-forward
Example 2. OQuick response feed-forward

B,(s)=16s, A (s)=s"+325+365, ¢ =1,

a, =300m/s*. The result is shown in Fig.7. The a
settles to the command value in 0.15 sec, but thea
takes 0.3 sec to settle. This quick response is realized
by a large deflection of u,, 0.52 rad or 30 deg.
Exampl Reduced angle-of- feed-forwar
B (s)=125, 4,(s)=5+25, ¢ =05,

a =300m/s*. The result is shown in Fig.8. The
u, carries half the acceleration. The deflection of

angle of attack & now becomes half form 0.44 rad to
0.22 rad or 13 deg. The maximum deflection of
u, is 0.44 rad or 25 deg. Both usand u, have steady



state value of 0.3 rad or 17 deg.
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Fig. 8. Reduced angle-of attack feed-forward

These examples show the variety of control features
obtained by the choice of feed-forward control for
the same characteristic polynomial. This is the
typical MIMO feature and quite different from SISO
case.

8. SUMARY OF CDM-MIMO DESIGN

The MIMO design steps taken in this paper are as

follows.

(1) The plant model given in state-space is simplified
and expressed in polynomial matrices of right
co-prime fraction form.

(2) The transfer functions between various inputs and
outputs are calculated, and the denominator and
numerator polynomials are shown on coefficient
diagrams. Appropriate input and output are
selected for feedback control design, where the
system becomes SIMO.

(3) After the design, the feedback controller is
incorporated with the plant, and a new plant is
defined.

(4) Repeat Step (2)(3) until the desired characteristic
polynomial is obtained.

(5) Feed-forward control is designed with the unused
excess freedom.

9. CONCLUSION

The major results of this paper are as follows.

(1) At control structure design, selection of input and
output is very important. For this purpose, the
coefficient diagrams of denominator and
numerator polynomials are found to be very
effective. )

(2) MIMO problém can be decomposed into a series
of SIMO problems., The feedback control with
desired characteristic - polynomial can be
effectively designed with this approach.

(3) The excess freedom can be utilized for
feed-forward control design, whereby various
control characteristics can be easily obtained.

e 2 P

" Manabe, S. (1994).
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