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Abstract. Sufficient condition for stability and instability by Lipatov is the theoretical basis of the
Coefficient Diagram Method (CDM), an effective control system design approach. The original paper by

Lipatov is expressed and explained in a way compatible with CDM to make its application easier.

Although

Lipatov’s condition is not accurate as that of Routh, it has a great practical value due to its simplicity.
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1. INTRODUCTION

All the control system design for linear time invariant system
boils down to proper selection of the characteristic
polynomial (denominator polynomial) and proper selection
of numerator polynomials for concerned input-output
relations. When these polynomials are properly selected, the
design of controller transfer function is straight forward, and
requires only simple mathematics.

The proper selection of the characteristic polynomial is not
difficult, if only stability and response are to be satisfied, but
it becomes complicated when robustness issue is present.
The coefficient diagram method (CDM) (Manabe, 1998c) is
an answer to this problem. Although the effectiveness of
CDM is shown in number of examples, it is not widely
accepted in control community. One reason for it seems 1o be
the lack of the sound theoretical basis.

The sufficient condition for stability and instability
developed by Lipatov (1978), when properly interpreted,
gives such theoretical basis. Routh-Hurwitz stability criterion
is accurate but requires some computation. It tells whether
the system is stable or unstable, but it fails to tell about the
degree of stability, which is of practical importance in actual
design. Lipatov’s condition is only sufficient condition for
stability and instability. Thus some ambiguity exists at the
border of stability region. But this shortcoming is
outweighed by the two merits; namely, simplicity of the
expression and capability of indicating the degree of stability.

The idea of CDM is very old (Manabe, 1998c), and various
researchers contributed to its development (Chestnut, 1951;
Graham, 1953; Tustin, 1958; Kessler, 1960; Naslin, 1968;
Kitamori, 1979). The successful application is reported in
various fields of control (Zaeh, 1987; Tanaka, 1992a,b; Hori

1994; Brandenburg, 1996). CDM inherited these rich
experiences. In addition to it, some improvements are made.
The first major improvement is the introduction of the
coefficient diagram, whereby graphical design becomes
possible like Bode diagram, but with much increased
effectiveness. The second improvement is the introduction of
the sufficient condition for stability and instability by
Lipatov (1978) in truly integrated form. With these
improvements, CDM becomes truly practical and
theoretically sound control design approach.

This paper is organized as follows. [n Section 2, the basics of
CDM are explained, and the difference of notations will be
clarified. In Section 3, the sufficient conditions for stability
and instability by Lipatov are shown in a way compatible
with the notation of CDM. In Section 4, the coefficient
diagram is introduced and stability condition is graphically
presented. In Section S, the proof of the sufficient condition
for instability is made. In séction 6, the proof of the sufficient
condition for stability is made.

2. BASICS OF CDM
2.1 Mathematical Relations

Some mathematical relations extensively used in CDM will
be introduced hereafter. These relations will be freely used in
later sections. The characteristic polynomial P(s) is given
in the following form.

n

P(s)=a,s" +---+as+ay = Za‘-si (1)
i=0
The stability index y;, the equivalent time constant 7, and

the stability limit 7: are defined as follows.
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Vi = ai2 la;,8,4), i=1~n-1 (2a)
T=a,/ay (2b)
Vi = Ul + U7 (2¢)

vnand y,are definedas <.

The equivalent time constant of the i-th order 7; is defined

in the similar manner as 7.

T, =a,,/a (3)
By Eq. (2a), the following relation is derived.
T,=Tz-1/}/i=T/(7z"'7271) (3b)

By the use of Eqgs. (2b)(3a), the coefficient g, is expressed
by 7; and ay.

a; =T Tag (4a)
By the use of Eq. (3b), this reduces to

a,=a,t /(Y vl v, iz2. (4b)
Then characteristic polynomial is expressed by a,, 7, and
v; as follows.

n i-1

Psy=a,[(D ([ [1/7. sy y+rs+1] (5)

=2 j=1

Egs. (4a) and (4b) can be expressed in a more general form
as follows. For i> j,

4; =T; T qT;4; (6a)

G =a, 7 [ (Fayy Y, P22, (6D)
For i<j,

a =a; [(t,.,T, ;7)) (6¢)

a, =ar 7 y 7y ), isj-1. (6d)
The stability index of the j-th order y;; is also defined and
expressed in terms of 7; by the use of Egs. (6b)(6d).

7ij=ai2/(ai+jai—j) (7a)

Vij =},i+j—l}/i2;rj—2"'7ij"'yi%j+27i—j+l (7b)
The stability index of the 2-nd order is very useful indication
of stability.

Via =0} 18;228,3) = Vina? Vi (7c)
The following relation, which is directly derived from Eq.
(3b), is also useful.

a;a; (@@ 1)=ViViq Y jal; ®)
2.2 Differences of Notations

In the original paper by Lipatov (1978), the characteristic
polynomial is given as follows.

F,(s)=aps" +as" '+ +a, (9a)
The A; parameter is introduced.
A =(a;10;.5)/(a;0,.1) (9b)

Considering the difference of notation of characteristic
polynomial, 4; is expressed by stability index y; as follows
by the use of Eq. (2a).

Ani =U@iYie),  i=2~n-1 (10a)

Az =1(r211) (10b)

A= p17n-2) (10¢)
Because stability is concerned only with 4;, Lipatov did not
introduce any further parameters.

Various authors have already introduced similar parameters
used in CDM. Kessler (1960) introduced damping factor

a,_; for stability index y;, and integration time 7,_; for
equivalent time constant of high order ;. A standard form
was suggested where =1, y; =2 for all i, and ay=1.
Naslin (1968) introduced characteristic ratio ¢; for stability
index y;, and characteristic pulsatance @;, which
corresponds to 1/7; . The recommendation is that y; should

be around 1.75 and larger than 1.6. Brandenburg (1996)
uses double ratio D,,;, which corresponds to 1/y;. Tanaka

(1992a) uses parameter c;, which corresponds to 1/y;.
Kitamori (1979) wuses normalized parameter, which

corresponds to a; /(ay7').

3. SUFFICIENT CONDITON FOR
STABILITY AND INSTABILITY

3.1 Suffici Condition for Instability

Lipatov gives Theorem 1 and 2 as the sufficient condition for
instability.

Theorem 1. If for some i, 1<i<n-2, the condition
A; >1 holds, then a system with characteristic polynomial
Eq. (9a) is unstable.

In the form compatible with CDM, the theorem will be stated
as follows. The system is unstable if, for some i=1~n-2,
Vin?i <1l. (11)
Because of its simplicity, this condition is used as standard in
CDM. The proof is given in Section 5. ‘

Theorem 2. If for some i, 2<i<n-2, the condition
Aiq4; > C,; holds, where

C,i =[n—i+( D 1][i+( D -1
2 2
£ , (12)
D" +3 0 (D +3
— l-t—*r]

: -1
n—i+-——
[ ;I
then a system with characteristic polynomial Eq. (9a) is

unstable.

In the form compatible with CDM, the theorem will be stated
as follows. The system is unstable if, for some i=2~n-2,

Vi2 <C;i (13a)
c - [n—i+1.5+0.5(-1)"" i +1.5+0.5(-1)"]
" n-i-05+0.5(-1)""][i-0.5+0.5(-1)"]

. (13b)

This shows that the stability index of 2-nd order y,is

related to the sufficient condition of instability.  This
condition is not used in CDM, because of its complexity and
limited effectiveness. The proof is in the original paper.
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3.2 Sufficient Condition for Stabili

Lipatov gives Theorem 3 as the sufficient condition for
stability. Two corollaries make the theorem more effective in
practical application. The following is the direct quotation
from Lipatv’s paper.

From the coefficients of the polynomial, we form n-4
polynomials of fifth order.

Fs(s)=a;s +a;st otags,
i=0~n-5 n25 (14)
Theorem 3. Suppose that the roots of all the polynomials,
Eq. (14), are located in the left half-plane. Let
M+dy <1, A, 3+A4,,<1. (15a)
Then a system with the characteristic polynomial Eq. (9a) is
stable.

Theorem 3 is the main result in this paper and in principle
represents a new result in stability theory. The theorem
asserts that, for the stability of a linear stationary system of
order n, the stability of (n-4) systems of fifth order suffices,
and thus enables us to effect a decomposition of a
complicated problem into a series of simpler problems whose
total complexity is less than that of the original problem,
especially for systems of high order.

We remark that in the parameters 4; the stability conditions
for the polynomials Eq. (14) appear very simple:
A <1
'1;42 < (l_’liﬂ)(l_’11‘+3)(1—"1i+1’1i+3)-2 (15b)
i=0~n-5
Using some sufficient conditions for the stability of fifth-

order systems, we can simplify even more the sufficient
conditions for stability.

Corollary 1. For the coefficients of the polynomial (9a),
suppose that the conditions

A <A, i=1~n-2, n25, (16a)
hold, where A’ is the real root of the equation

A(A+1)? =1. (16b)

A =0.465 (16¢)

Then a system with the characteristic polynomial Eq. (9a) is
stable.

Corollary 2. For the coefficients of the polynomial (9a),
suppose that

A+A, <A, i=1~n-3, n25, (17a)
where

A7 =3/4Y3-12089. (17b)
Then a system with the characteristic polynomial Eq. (Ya) is
stable.

The above is the direct quotation of Lipatov’s paper. When
expressed in the form compatible with CDM, Egs. (16a, b, c)
will be expressed as follows.

VYV >1.4546, i=1~n-2 (18)
Eqgs. (17a, b) will be as follows.

y; >1.12374y;, i=2~n-2, (19)

where y; is the stability limit as defined by Eq. (2¢).

In CDM, Corollary 2 or Eq. (19) is used as the sufficient
condition for stability, because of its closeness to the
necessary condition in practical application. The proof of
Theorem 3 in the original paper is modified for improved
readability, and is given in Section 6.

4. STABILITY CONDITION EXPRESSED BY
COEFFICENT DIAGRAM

4.1 Coefficient Diagram

When the plant/controller transfer functions G »(s)and
G_(s) are given as
G,(s)=1/(0.25s* +s° + 25 +0.55) (20a)
G, ()= (kys* +ks+ky)/ () (20b)
k,=15, k;=1, ky=02, I, =1,
the characteristic polynomial P(s) is derived as follows.
P(s)=0.255" +5* +25° + 25 +5+0.2 (21a)
Then the coefficient a,, stability index y;, equivalent time

constant 7, and stability limit }/; are expressed in vector
form as follows.

a; =[025 1 2 2 1 02] (21b)
vi=[2 2 2 25] (21¢)
T=5 (214d)

7. =[05 1 09 0.5)
The coefficient diagram is shown as in Fig. 1, where aq; is

read by the left side scale and y,, 7, and }': are read by

the right side scale. Equivalent time constant 7 is expressed
by a line connecting 1to 7.

From Eq. (3b), stability index y;is the ratio of adjacent
7;s, and it can be obtained graphically as in Fig. 2a. Fig. 2a
also shows that, if the curvature of a; becomes larger, the
system becomes more stable, corresponding to larger
stability index ;. If the a; curve is left-end down or right-
end up (Fig. 2b), equivalent time constant 7 is small and

response is fast. The equivalent time constant 7 specifies the
response speed.

The coefficient diagram is also used for parameter sensitivity
analysis and robustness analysis. In this example, the
characteristic polynomial P(s)is decomposed into two

component polynomials as follows.

P(s)=F(s)+ B (s) (22a)
B(s) =1,(0.255° +s* + 25° +0.557) (22b)
B(s)=k,s* +ks +k, (22¢)
The auxiliary sensitivity function T (s) is expressed as
T(s)=F,(s)/P(s). (224d)

Eq. (22b) is shown on Fig. 1 with small circles and dotted
lines. Eq. (22c) is shown with small squares and dotted lines.
Designer can visually assess the deformation of the
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coefficient diagram due to the parameter change of %,,k;,
and kg . Then he can visualize the variation of stability and
response. Also from Eq. (22d), it is clear that robustness
can be analyzed by comparison of coefficients a; and k;at
the coefficient diagram.

As explained above, the coefficient diagram indicates
stability, response, and robustness (three major properties in
control design) in a single diagram, enabling the designer to
grasp the total picture of the control system. At present, Bode
diagram is used for this purpose. However coefficient
diagram is more accurate and easy to use in actual design.

42  Stability Condii

From the Routh-Hurwitz stability criterion, the stability
condition for the third order is given as

a,a; >aa,. (23a)
If it is expressed by stability index,

Y2r1>1. (23b)
The stability condition for the fourth order is given as

a, >(a,/az)a, +(as/ay)a,. (24a)
If it is expressed by stability index and stability limit,

2>73- (24b)

For the system higher than or equal to 5-th order, Lipatov’s
stability conditions Egs. (11) and (19) will be used. If the
partial i-th order polynomial is defined as a i-th order
polynomial whose coefficients are taken from i+1 successive
coefficients of the original polynomial as Eq. (14), the
stability condition is summarized in Theorem 4.

: 43 A &g‘? ‘
1 — s v
B | a A~
2 B
L/
0.1 it 0.1 / ot
Ya “C"J‘ y,' L4 ) 4 re 7:
0.01 1 0.01 A 1
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P(s)=0.55>+2s" +4s+3.2 P(s)=0.06255* + 0.55* + 25° + 45+ 3.2

Fig. 3a. 3-rd order Fig. 3b. 4-th order
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P(s)=s" +5s" +115° + 2357 + 285 +12

Fig. 4b. 5-th order

P(s)=s%+4s%+ 3"+ 2"+ s+ 45+ 4

Fig. 4a. 6-th order

Theorem 4. The system is stable, if all the partial 4-th order
polynomials are stable with the margin of 1.12. The system is
unstable if some partial 3-rd order polynomial is unstable.

Thus the sufficient condition for stability is given as
2, 9

a; >1.12( a;,,+—a;_,] (25a)
i+l a; 4
7, >1.12y;, foralli=2~n-2. (25b)
The sufficient condition for instability is given as
a;.18; <a;,,0;_4 (26a)
Vis?i S1,  for somei=1~n-2. (26b)

When coefficient diagram is used, the designer can find the
worst (least convex) 3-rd order or 4-th order partial
polynomial at a first glance, and application of the

theorem gives the answer immediately.

These stability conditions can be graphically expressed in the
coefficient diagram. Fig. 3a is a 3-rd order example. Point A

is (azal)u‘5 and point B is (a3a0)0‘5. Thus if A is above B,
the system is stable. Point C is (7,»)". If it is above 1, the
system is stable.

Fig. 3b is a 4-th order example. Point A is obtained by
drawing a line from a, in parallel with line a5 a,. Similarly

point B is obtained by drawing a line from a; in parallel
with line a, a,. The stability condition is a,> (A + B). The

other condition is y, > }/; .

Fig. 4a is a 6-th order example (Franklin, 1994, p.217),
where

P(s)=5+4s" +3s* +25° + s> +4s+4. (27a)
By the first glance, the worst points are found to be
[a, a5 a, a,] and A < B. Thus the system is unstable.

Fig. 4b is another 5-th order example (Franklin, 1994, p.219),
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where
P(s)=s> +55* +11s° + 2352 + 285 +12 . (27b)
By the first glance, the worst point is a, =11. Because A =

23/5 = 4.6, B = (5/23)28 = 6.087, and A + B = 10.687, the
sufficient condition for stability is not satisfied. Also looking
at the figure, it is clear that the sufficient condition for
instability is not satisfied either. In fact, this system is on the
boundary of stability and has imaginary roots at +;2. It is

very interesting to note that
(ay/a,)*° =2.145
is approximately equal to these imaginary roots.

(27¢)

4.3 Selection of Stabiljty Index

In CDM, the designer designs the controller such that the
coefficient diagram has favorable shape, where the selection
of stability index is of utmost importance.

Stability condition by Lipatov as expressed in Theorem 4
seems to suggest two important properties. First, in order to

indicate the degree of stability, y; / }/; ratio may be used as
a good measure. Secondly, if all y;s are larger than 1.5,

the system is stable. Lipatov also expressed third important
property in the process of proving Theorem 3 (explained in
Section 6). If all y; s are larger than 4, all roots are distinct,

negative, and real.

From these reason, stability index y; is usually chosen in a

region 1.5~4. In actual practice, a standard form is suggested
in CDM, based on practical experiences, as follows.

Vo1 s ¥3:¥2 =2, 71 =25 (28a)
Or in a more relaxed form,
yily,>15, fori=4~n-1 (28b)

V3=V2=2, 7,=25.
It is very interesting to note that, for the standard form of Eq.
(28a), v,/ }/,-' ratio is 2 for most i.

5. PROOF OF SUFFICIENT CONDITION
FOR INSTABILITY

The proof of the sufficient condition for instability (Theorem
1) is given in Appendix of the original paper. The proof will
be reiterated here using CDM notation.

From a stable n-th order polynomial P(s), form a stable
(n+2)-th order polynomial P’(s) by multiplying a stable
second order polynomial as follows.

P(s)=a,s" +---+a;s+a, (29a)

P'(s)=(s’+as+B)P(s), a,f>0 (29b)
The coefficient of new polynomial is given as follows.

P'(s)=a,,,s" "+ +a;s +a, (30a)
(30b)
where a,.,,a,,,,a ,a_,are considered 0. Now calculate

a =a; ,+aa;_;+fa;, i=0~n+2,

the value D defined as follows, where y; is the stability

index of the new polynomial.

D= ()’i‘+17; _1)‘1;«2”;71 = ai'Hai _a:+2ai—1 (31a)
i=1~n
By Eq. (30b), D is calculated as follows.
D =(a;_y+aa; + Ba;,,)a;_, +aa; |+ pa;) (31b)
—(a;+aa; .+ Pa;.,)a; 3 +aa;_ + Pa;_ )
D= (a£—1ai—2 —a,a;_3) +a2(aia£—l —a,48;_3)
+Ba;19; —a;00;_1) +a(a, —a;,40; 3) (31¢)

+ (a8, 5 —a;,,8;_3) +aﬂ(ai2 —0;.20; 3)

By Egs. (7¢) and (8), this is expressed in terms of stability
indexy; .
D= 172~ Daja;_; +a2(}/iyi42—l)ai+1ai—2

+B Vit ~Dajga  +a(yiy i, _1)2‘1i+1ai—3

B ioa ~ D8t 3+ @By Vi ~ D800 o

i=1l~n (31d)

By Eq. (30b), if @; >0 (i=0~n), a, >0 (i=0~n+2).
From Egs. (31c, d), D becomes positive for i=1~n, if
a;>0 (i=0~n), a,,5,a,.,a,a_,=0,and y,.7, >1
(i=1~n-2). By Eq. (31a), this leads to the condition
}/i‘+1yi' >1(i=1~n).

The stable 3-rd and 4-th order polynomial has the property
that y;.,7;>1. Thus the stable 5-th and 6-th order
polynomial must have the same property 7;,,7; >1, and so

on. The lack of it immediately leads to the conclusion that the
polynomial is unstable. This completes the proof.

6. PROOF OF SUFFICIENT CONDITION
FOR STABILITY

6.1 Stability Theorem

The detailed proof of Theorem 3 is given in Appendix of the
original paper. In order to facilitate the understanding of the
proof, some basics of the stability theory are reviewed
hereafter.

A stable characteristic polynomial P(s) is composed of stable
1-st order and 2-nd order polynomials.

P(s)=a,s" +etais+ag

L M
=a ([ [ +o [ J6? +aws+ B (32)
j=1 k=1
Oy Qs Be>0, n=L+2M,
where a, is arbitrarily chosen to be positive. Because the
coefficient a; is the product sum of the positive numbers, it
must be always positive. This is the necessary condition for
stability, and a;is considered positive hereafter, because

otherwise the system is found to be unstable automatically.

For s = jw, the argument of P(s) becomes

L M
arg P(jw) =) arg(o; +jw)+ 3 [(B; —0%)+ jao].

j=1 k=1

(33)
Thus if w increases from 0 to o, argP(jw) increases




monotonically from 0 to (7 /2)n radians. In unstable system,
arg P(joo) is defined as (7 /2)n. Then arg P(jO) becomes
#n, radians, where n, is the number of unstable roots. Thus
for o increase from 0 to oo, argP(jw) changes from
7n, to (7 /2)n radians in unstable system. This relation is
summarized in Theorem 5, which is an elementary
expression of argument principle of Cauchy and Sturm, and

called as Theorem of Cremer-Leonhard-Michailov (Mansour,
1994).

Theorem 5. The polynomial P(s) is stable, if and only if
argP(jw) increases monotonically from 0 to (7/2)n
radians for the o increase from 0 tow.

Now from Theorem 5, the stability condition of Hermite-
Bieler will be derived. For s = jw , P(s) will be decomposed

into real and imaginary part, where x = -w?.

P(jo)=R(x)+ jol(x) (34)

The sum of the orders of R(x) and I(x) is n—-1. From
Theorem 5, the following observation is made for stable
polynomial. R(0) and /(0) must be positive. For decrease of x
from 0 to—o , R(x) becomes O first, then I(x) becomes 0, and
this process repeats until the total number of zero crossing
becomes n — 1. This condition is summarized in the stability
condition by Hermite-Bieler as Theorem 6 (Mansour, 1994).

Theorem 6. The polynomial P(s) is stable, if and only if
R(0) and I(0) are positive, and R(x) and I(x) have simple real
negative alternating roots. The root closest to zero is of R(x).

Theorem 6 will be used extensively in the proof of the
sufficient condition of stability explained hereafter.

6.2 Proof of the Sufficient Condition for Stabili

The proof of the original paper is some what modified to
facilitate its understanding in conformity with CDM. The
proof proceeds in 4 steps. In Step 1 (Condition for negative
real roots), it is shown that, for a polynomial of positive real
coefficient, the sufficient condition that all roots are distinct,
negative, and real is
y;i>4, i=1l~n-1. (35)

The proof is given in Appendix Al.

In Step 2 (Interval for negative real roots), it is shown that
such negative roots s; lies in some interval determined by
a;and y; of P(s).

-y <8;<-n;, i=l~n (36)

i =2a,, la)1+1-4/y]"
7, =05(a;_, /a)1+\1-4/y, 1)

Vo=V =
The proof is given in Appendix A2.

In Step 3 (Stability condition of the partial 5-th order

polynomial), the following relations are derived from the

stability condition of the partial 5-th order polynomial.
Via>4, i=2~n-2 37
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-0.5(a;/a,;) [1+\}1_4/7i2]
< —2((1,_1 /an]) [1+\’l—4/yiﬂ 2 ]~1

i=2~n-3
The derivation is given in Appendix A3.

(38)

Step 4 is the main body of proof. The proof is made by the
direct application of stability condition of Hermite-Bieler
(Theorem 6). For polynomial P(s) of Eq. (32), R(x) and I(x)
of Eq. (34) will be given as follows.

R(x)=a,x™'* +-+ayx+a, (39a)
m = n(neven),n—1(nodd)

b (39b)

I(x)=a; x Ziotaxta
l=n-2(neven),n—-1(nodd)

For brevity, only n even case will be considered. It is clear
that R(0) and I(0) are positive. Because y;, >4 for
i=2~n-2, all roots of R(x) and I(X) are found to be
distinct, negative, and real from Step 1. It should be noted
that the stability index of R(x) and I(x) corresponds to the
stability index of the 2-nd order of P(s). All roots of R(x) and
IX), xz and x;, are listed as follows. The left end is
negative largest. '

XRi = XRny2>"" "2 ¥R20 XR1 (40a)

Xy = Xpjz-1" " %12 X (40b)
By proper interpretation of Eq. (36) in Step 2, the intervals
for the roOtS Xy, X1y > Xxz > X1z 5 Xp 5/2- 2NA Xg ,, aT€ given as

follows.
—2(‘10/“2)[1*‘\/1_4/722]71 <xg <—(ay/a,) (41a)
—2(a, lay)[1+ 1-4/75, ] <x, <—(a,/a;) (41b)
2a, a1+ 1-4/7,,]" @19
c
< Xy, <=0.5(a, /a )1+ J1-4/7,,]
-2(a, /as)[1+\/1_4/752 ]71
(41d)
<xp, <=0.5(ay /ag)[1+ 1= 4175,
_(an-S /an—l) < xln/l—l
(41¢)

<-0.5(a, ,/a, )1+ J1-4/7,3,]

_(an~2 /an) < an/Z

(419
< _O‘S(an—z /an)[1+ 1_ 4/771-22]
First it is found that x,, < x,, , because

(a,/ay) > 2Aag /a,) 1+ 1-4/y5 "

Eq. (42a) is verified in the following manner.
by replacing @, andy,, withy,.

0.5(7,7)[1+ 1= 4/(7;737)]>1 (42b)

The condition stated in Eq. (152) in Theorem 3 is found to be
the stability condition of the partial 4-th order polynomial at
the both ends. When expressed in terms of CDM, as in Eq.
(2c) and (24b), it can be stated as follows.

v, >y, +1/y, (42¢)
Or

v > 1+l

(42a)
It is modified

(42d)




When y, 2y,, 7,7, > 2. Eq. (42b) is automatically satisfied.
For the case y, <y,, the left side of Eq. (42b) is calculated
with Eq. (42d) and the relation is verified.

0.5(,1 )1+ 1= 4/(75737,)]
=050y, + \/(}'2}’1 ) =4, /73)]
>0.5[(A+7, /1) +A+7, /7Y =4, 1 73)]

=0.5[(A+7,/7;)+A-7,/7;)*]1=1

In the similar manner, xg,,, <x,,,,_,is derived.

(42e)

For i=2,Eq. (38) becomes

-0.5(a,/a)1+1-4/7,,]
<-2a,/a;)[1+ 1= 47y, 1" . (44)

Then from Egs. (41b, c), x,, <x,,is proved. By continuing
the process, the following result is obtained.
XRniz <Xraj21 <XRns2-1 <Xins22 (45)
<eer <Xpp <Xpp <Xpy <X <—(ay/a;) <0
Thus the roots are distinct (simple), negative, real and
alternating. The root closest to 0 isx,, . It was shown already

that R(0) and /(0) are positive. Theorem 6 is satisfied and
P(s) is stable.

6.3 Derivation of Corollaries

Proof of Corollary 1 and 2 is briefly touched in the original
paper. But main body of the proof is referred to another
Russian paper. A proof in conformity with CDM will be
given hereafter.

The stability condition of a 5-th order polynomial
P(s)=ass’ +a,;s* +a,5° +a,s° +as+a, (46a)

is the same as that of the 4-th order polynomial reduced by

the Routh table.

P(s)=a,s* +a,s’ +a,s* +a,s +a, (46b)
a, =a,~aa;/a, =a;[1-(r,y,)"]
a, =a,-aga;/a, = a[l-(y757,)"]
The stability condition becomes
72 >aly, +1/(ay,) (46c)

a=[1=-(y7sr) " M-r) T
By rearrangement, the stability condition is given as follows.
The result is the same as that given in Theorem 3 of the
original paper.
(7473 =D, -1 >747/1[1*(71727374)_1]2 (46d)
Suppose y,7, <v,7,,and define the following variables.

A=0r)" A =) (47a)

pP= (}/271)(7473)_1 <1 (47b)
Then Eq. (46d) becomes

A SA=4)A- pA)1- pA2]7. (48a)

If y,7,27.7;, use yy,instead of y,y,. The result of
numerical analysis for variation of p (Fig. 5) shows that, if
the next relation is satisfied, Eq. (48a) is also satisfied.

A, <minfl-4, 1+ 4)?] (48b)
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The first term of the right hand side corresponds to p =0,
and the second term corresponds to p =1 of Eq. (48a).

Now assume

LA <A, (49a)
where
A=(1+2")?, or A" =0.465571. (49b)

Then Eq. (48b) and hence Eq. (48a) are satisfied. This
completes the proof of Corollary 1.

Now assume
A+ <A” (50)
Then choose A in such a manner that the boundary straight

line of Eq. (50) is tangent to Eq. (48b). This can be obtained
by solving the three equations simultaneously.

Ay+A,=2" (51a)
2=+ ) (510)
dAy ldA =201+ 4)° = -1 (51¢) *

From Egs. (51b, ¢), 4, =(0.5/*°. ‘
From Eq. (51c), 4 =(0.5)"* -1. Thus from Eq. (51a),
AT = (0.5 +(0.5)" -1

=3/4" -1=0.889882. (52)
This completes the proof of Corollary 2.

From Fig. 5, it becomes clear that Corollary 2 which satisfies
Egs. (50) (52) is closer to the real boundary than Corollary 1,
which satisfies Eqs. (49a, b). Only exception is a very small

region near A ~ A, ~ A",

7. CONCLUSION

The major results of this paper are as follows.

(1) The sufficient conditions for stability and instability
proposed by Lipatov (1978) are explained. They are
modified and presented in a compact statement as
Theorem 4.

(2) Brief explanation of CDM is made and the condition for
stability and instability is presented in a graphical form.
This graphical representation in coefficient diagram is very
effective in showing the total pictures of the system to the




designer.
(3) The proofs given in the original paper are modified and
expanded to improve readability.

The sufficient condition for stability and instability is least
known in the control community. Only one paper (Bose,
1988) made a brief reference to it in the author’s knowledge.
However its practical importance seems to surpass Routh’s
stability criterion. It is a sincere wish of the author that the
pioneering work of Lipatov is more widely accepted in the
control community for the progress of control science and
technology.

APPENDIX A

Al.  Condition for Negative Real Roots

For a characteristic polynomial (or any polynomial with
positive real coefficients) with all stability index y, >4, all
roots are distinct, negative, and real. This can be shown by
examining the sign of P(s) for s=-0.5(a_,/a) and

—2(a;,_,/a;). Express P(s) in the following form.
P(s)=a,s" +--+a;s' +a,;s"" +--+as+a,
=a,,s'"'[A(s)(a; /a,,)s + B(s)] (A1)
A(s)= ) (a,., /a,)s’ (A2a)
j=0
i-1 ‘
B(s)= z (ai—l—]' /a;,,)s™” (A2b)
j=0

Now A(-0.5a;,_,/a;) and B(-0.5a,_,/a,)will be evaluated
by replacing coefficients g, with stability index y, by Eq.
(3a)(6b)(6d).

A(-05a_,/a,) =1+ (<0.5) [y, ;\7% 7))

J=1

=1-05/y,+0.25/(y,.,y})--=0875~1  (A3a)
;-1
B(—O'Sai—l /a.') =1+ Z(_Z)j /(}/zj—lyij—izl " '7;‘—,)
j=1
=1-2/y,,+4/(r ) =05~1 (A3b)
Thus for s =-0.5(a;,_,/a,),
[A(s)(a; /a,_.,)s+B(s)]>0. (A3c)

In the similar manner A(-2a, ,/a,) and B(-2a,_,/a,)are
evaluated.

A(-2a,,/a;) :1+Z(_2)j /(7i+j—17i2+j-2 "'7ij)
=)

J

=1-2/y,+4/y,.,y)--=05~1 (Ada)
i-1 . X
B(-2a,_,/a,)= 1+Z(_0-S)] /(}’i-,'}’;z—,'ﬂ vl
j=1
=1-0.5/y,,+0.25/(y} 7, .,)~--=0875~1 (Adb)
Thus for s=-2(a,_,/a,),
[A(s)a, /a,_)s+ B(s)]<0. (Adc)

From Egs. (A1)(A3c)(A4c), it becomes clear that P(s) values
for s=-0.5(a, ,/a;) and -2(a,_,/a,) have the opposite
sign. Therefore there must be at least one real root in the

interval [-2a,_,/a,,-0.5a,,/a;]. There are n such intervals
corresponding to i =1~ n, and such intervals do not overlap
because y, > 4. Thus only one root is in each interval. This
proves that all roots, s, , are distinct, negative, and real.
—2a_,/a, <s,<-0.5a,_,/a,, i=1~n (A5)

i

A2. Interval for Negative Real Roots

The interval for the negative real roots of a characteristic
polynomial P(s) with y, >4, as expressed in Eq. (AS), can
be further narrowed as follows.

M, <s, <-1,, i=l~n (A6a)
= 2a a1+ 1-47y, ] (A6b)
n =05(a,, /a)1+1-4/7,,] (A6c)
Ya=Ve=0 (A6d)

This can be proved by the use of the relation between roots
and coefficients of polynomial. Define x, =-s,, then

X,

i+l

their products. There are N =  C,_, such combinations, and

> x,. Choose (n-k) of x;s from total nx;s, and form

they are named asy,.. The j iny, is taken such that
y yk] kj

Yej > Vi ju - Clearly,

Yir T XX " Xy Yia 2 V2 200> Yaw (A7a)
N

ala, =Yy, N=,C, (A7b)
j=1

X, =S, X, >X_ >->X. (A7c)

Next, form a polynomial in —s*, PP(~s’), from P(~s)P(s).

PP(~s*) = P(=s)P(s) = iaa,. (-s%Y (A8a)

M
aa, =a’[1+) 2(-1) /y,,], M =min(i,n—i) (A8b)
j=1

From these relations, the upper and lower bounds of
aa,/aa, will be sought, and some relations of y, will be

obtained. The lower bound is calculated from Egs. (A8a, b)
and the condition y, >4 (i=1~n-1)as follows.
aa,/aa, = (a,/a,)[1-2/7,+2/y,, =]
2(a,/a,)[1-2/y,] (A9a)
Now the upper bound is sought. Considering the roots of
PP(-s*) is —s?, the following result is obtained using the
relation of roots and coefficients of polynomial.

N
aa;/aa, = Zy,zj , N=,C,_, (A9b)
j=1
This leads to
2 %2 2 v 2
aa;/aa, = y; +Zyl'; <Ya +[ZYU]
j=2 j=2
zyi2]+[(ai/an)_yi1]2' (AQC)

The combination of Eqgs. (A9a) and (A9c) leads to the
following result concerning y,, .

yizl—(al/an)yi1+(ai/an)z/yi20 (Aloa)
There are two solutions for Eq. (A10a).
Y21 20.5(a; /a,)[1+1-4/y,] (A10b)
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Ya $0.5(a, /a,)1-1-47/7,] (A10¢)
Only upper solution Fq. (A10b) is possible, because
¥, 20.5(a;/a,) is proved in the following manner. From

Eqgs. (A7a, b) and (A9a, b), the following relation is derived
and the result follows.

N N
yala;la,)= yilzyij 2 Zyizj =aa,/aa,
=1

j=1

(A10d)
2(a,/a,)*[1-2/y,120.5(a, /a,)*
From Eq. (A7b), it is clear that y, <(a;/a,). Then the
relation for the interval of y,, is derived as follows.
0.5(a, /a,)[1+J1-4/y,]<y, <(a,/a,)
This relation holds for i-1.

0.5(a,,/a,)1+1-4/y, 1<y, 1, <(a,,/a,) (Allb)
From Eq. (A7a),

(Alla)

X =Y/ Ya- (Allc)
Then the interval for x, is obtained.
0.5(a;_, /a)[1+\1-4/y,.
(a.,/a)1+1-4/7,,] (A12)

<x, <2a,, /a)1+J1-4/y, "
The final result Eqs. (A6a, b, c) is obtained for s, =-x, . Eq.

(A6d) (¥, =y, =) is chosen such that Eq. (AYa) holds for
i=0and n,andEq. (Al2)istruefor i=1~n.

A3. Stability Condition of the Partial 5-th Order Pol ial

A partial 5-th order polynomial of a characteristic polynomial
P(s) is given as B, (s) .
P,(s)=a,’ +a,,,s +a,,5" +a,,,5" +a,,,5+a,
k=0~n-5 (A13)
This will be analyzed by Theorem 6 (Hermite-Bieler).
P, (s)is arranged in the even and odd terms, and s%is

replaced by x .

B, (s)=R(x)+sl(x) (Al4a)
R(x)=a, X' +a,x+a, (Al4b)
I(x) =a,(+5,\c2 +a,x+a,., (Al4c)

Because this polynomial is stable, the roots of R(x), x,,, and
the roots of I(x), x, , are distinct, negative, real, and alternate.
They are ordered as follows.

Xy <Xy <Xp; <X <0 (Al5)
From the condition that the roots are distinct and real in the
quadratic equation, y,,,,andy,,,, must be larger than 4.
These roots are given as follows.

X = =05y /8, 1= 1= 477, ] (Al6a)
Xgo = =0.5(a,,, /8, 1+ [1-4/7,.5,] (A16b)
x, =—0.5(a, . /a,,5)[1- M] (Al6c)
%12 = =0.5(a, 5 /8,514 1= 477,.1, ] (Al6d)

Eq. (16c) can be further manipulated into the following form.

xp ==2a,,/a,5)[1+ \/1 ~4/V32]" (Alé6e)

From the condition that x,, <x,, the following relation is
derived.
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‘O'S(ak*Z /aka)[l'*‘\[l - 4/}/k+22]
<-2a,.,, /ak+3)[1+\,1_4/}/k+32]‘1 (A17)

This relation holds for all B, (s) (k = 0 ~ n-5), and the above

relations are generalized as follows.

Vi >4, i=2~n-2 (Al8a)
~0.5(a, /a,,,)1+\1-4/7,,]
<=2a,/a, )1+ =47y, ]
i=2~n-3 (A18b)

The above relations are the result from the stability of the
partial 5-th order polynomial and will be used directly in the
proof.
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