
Recent Development of Coefficient Diagram Method 

Shunji Manabe*, Young-Chol Kimí 

*Tokai University, Control Engineering Department 

1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan 

Tel: +81-466-23-2601, Fax: +81-466-50-2651 

(E-mail: manabe@keyaki.cc.u-tokai.ac.jp) 

tSchoo1 of Electrical & Electronics Engineering, Chungbuk National University 

San 48 Gaesin-dong, Cheongju, Chungbuk, 361-763, Korea 

Tel: +82-431-261-2475, Fax: +82-431-272-2475 

(E-mail: yckim@cbucc.chungbuk.ac.kr) 

Abstract 
A controller design method, called Coefficient 

Diagram Method (CDM), is introduced. By this method 
the simplest controller to satisfy the specification can be 
designed efficiently. The designer can design the 
controller and the characteristic polynomial of the closed- 
loop system simultaneously taking a good balance of 
stability, response, and robustness. 
Keywords: Control system design, control theory, 
controllers, stability, polynomials. 

1. Introduction 

With wide spread of control technology into various 
fields, simple and reliable control design approach is 
keenly needed. The classical control well answered to 
this need for the ordinary control design problems, but 
not for more complex plants. The modem control has 
been developed to answer to this need. But it has not 
reached to the satisfactory state, because of complexity of 
the theory, unnecessarily high order of the designed 
controller, difficulty in tuning, and lack of robustness. 

The Coefficient Diagram Method (CDM) has been 
developed to answer this problem. The CDM is fairly 
new and it is not well-known, but its basic philosophy has 
been known in industry and in control community for 
more than 40 years [ 1][2][4][ 141 with successful 
application in servo control [l], steel mill drive control 
[4], gas turbine control [12], and spacecraft attitude 
control [7]. The historical background is given in [lo]. 

In Section 2, basic philosophy of CDM is explained to 
give the total picture of CDM. In Section 3, basics of 
CDM are explained, and in Section 4 recent development 
of CDM design process is briefly explained. Examples 
are not shown in this paper because of space limitation. 

2. Basic philosophy of CDM 

All the control system design for linear time invariant 
dynamic systems boils down to proper selection of the 
characteristic polynomials (denominator of transfer 
functions) and proper selection of the numerator 
polynomials for concerned input-output relations. 
When these polynomials are selected, the design of 

controller transfer function is straight forward, and 
requires only simple mathematics, when powerful 
computational tools are freely available as is today. 

Especially the proper selection of the characteristic 
polynomial is essential in designing a good control 
system with proper balance of stability, response, and 
robustness. In any control system, the controller has 
limitation. The controller should be low order, 
minimum phase if possible, and stable unless unstable 
controller is absolutely necessary. The controller has a 
bandwidth limitation and power limitation in practice. 
These limitations impose strict limitation at the choice of 
characteristic polynomial. If characteristic polynomial 
is chosen without this consideration, the system usually 
looses robustness, although stability and response 
requirements are satisfied. When the plant is complex 
and difficult to control, stability and robustness become a 
trade-off issue, and one is to be sacrificed for the other. 

The CDM gives the way to directly design the 
characteristic polynomial under controller limitation. 
The essence of CDM is ìCoefficient Diagramî, 
ìSufficient condition of stability by Lipatovî, and 
ìImproved version of Kessler standard formî. The 
coefficient diagram is a semi-log diagram where the 
coefficients of characteristic polynomial are shown in the 
ordinate in logarithmic scale and the numbers of powers 
corresponding to the coefficients are shown in the 
abscissa in linear scale. 

As Bode diagram and Nyquist diagram give 
information on stability and response, the coefficient 
diagram gives information on stability, response, and 
robustness. The convexity of the curve is a measure of 
stability. The general inclination of the curve is a 
measure of response speed. The variation of the shape 
of the curve due to plant/controller parameter variation is 
a measure of robustness. 

Because the coefficients of the characteristic 
polynomial is related to the plant and controller 
parameters in closed form (usually in linear combination), 
design under controller limitation with robustness 
consideration becomes possible. 

The design of characteristic polynomial in an efficient 
manner necessitates to express the plant and controller in 
polynomials, not transfer function nor state space 
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expression. By so doing, the ambiguity inherent to 
transfer function (pole zero cancellation) and complexity 
of expression in state space (not n, but n2 parameters in A 
matrix) are avoided. 

The sufficient condition of stability by Lipatov is least 
known in the control community, but it is the theoretical 
basis of CDM. It gives the limit of convexity of the 
curve for the system to be stable. 

The improved version of Kessler standard form gives 
the optimum convexity of the curve, which the designer 
is to seek under the constraint of controller limitation and 
robustness requirement. 

When the characteristic polynomial is designed, the 
controller design is the same as in the pole assignment 
approach. It is interesting to note that, when the CDM 
design result is properly interpreted, the weights of LQR 
can be obtained, where the order of observer can be lower 
than the reduced-order observer [9]. 

3. Basics of CDM 

3.1 Mathematical model 
The standard block diagram of the CDM design for a 

single-input single-output system is shown in Fig. 1. 
The plant equation is given as 

Ap(s)x=u+d (la) 

y =B, (s)x , P-0 
where u, Y, and d are input, output, and disturbance. 
The symbol x is called the basic state variable. A,(s) and 
B,(s) are the denominator and numerator polynomial of 
the plant transfer function C,(s). It will be easily seen 
that this expression has a direct correspondence with the 
cont.rol canonical form of the state-space expression, and 
x corresponds to the state variable of the lowest order. 
All the other states are expressed as the derivatives of x 
of high order. 

Controller equation is given as 

A, (s)u = B, WY, - B, (SKY + n) 9 (2) 
where y, and n are reference input and noise on the output. 
A,(s) is the denominator of the controller transfer function. 
B,(s) and B,(s) are called the reference numerator and 
feedback numerator of the controller transfer function. 
Because the controller transfer function has two 
numerators, it is called two-degree-of-freedom system. 
This expression corresponds to the observer canonical 
form of the state-space expression. 

Elimination of y and u from Eq. (2) by Eqs. (la, b) 
gives 

P(s)x = B, (0, + A, (s)d - B, (s)n , (34 

where P(s) is the characteristic polynomial and given as 

P(s) = A, (s)A, 6) + B, (0, (s) - wo 

In a similar manner, equation for y and u can be obtained. 
Because this system has 3 inputs and 3 outputs, there are 
9 transfer functions. 

For CDM design, the following four basic relations are 
selected as standard, namely 

P(s)x = WY r (4a) 

WY = B, w, WY r w 
PWY = B, w, w (49 
pw-Y> = Bp WC w * (44 

Eq. (4a) is the response of x to y, when B,(s) = P(O), and 
it corresponds to the canonical closed-loop transfer 
function of system type 1 for P(s), which will be 
explained later. This equation specifies the 
characteristic polynomial, and it is a very good measure 
of stability. Eq. (4b) is for the command following 
characteristics. Eq. (4~) is for the disturbance rejection 
characteristics. Eq. (4d) corresponds to the 

complementary sensitivity function T(s), and it is useful 
for checking the robustness. In the CDM design, these 
four basic relations are used as performance specification. 
The design of P(s) is first made to satisfy specifications 
on Eqs. (4a)(4c)(4d), and then B,(s) is adjusted to satisfy 
the specification on Eq. (4b). 

Controller 
,d 

Plant 

-T - I I I 

I- +1 n 

4 0) 

Fig. 1. Mathematical model 

3.2 Mathematical relations 
Some mathematical relations extensively used in CDM 

will be introduced hereafter. The characteristic 

polynomial is given in the following form. 
n 

P(s) = a,sí + . . . + a,s + a0 = C aiSi (5) 
i=O 

The stability index x, the equivalent time constant 2, and 

stability limit x* are defined as follows. 

Yi = a: l(ai+lai-l) 9 i=l-n-l @a) 

z=a,lao wo 

y; =llyi+l +llyi_l 

i=l-n-l, yn=yo=a (6c) 

Also the equivalent time constant of the i-th order 5 is 
defined as follows. 

ri = ai+r Ia, 9 i=l-n-l (3 

Then the following relations are derived. 

Zi = zi_l lyi = T /@i í * ëy2yI) m 

a, = 2,_1...r2rlr a, 

= aori / (yi_IyE2 . . . y;-î y;-l) 
UC) 

Then characteristic polynomial will be expressed by a,, 7 

and x as follows. 

i=2 j=l 

The stability index of the j-th order x j is defined as 
follows. 

h h
2056



j-l 

Yij = ai /(ai+ jai-j) = 1I-I o/i+ j-kYi- j+k Jk IY/ Csa) 
k=l 

Thus z can be considered the equivalent time constant of 
the 0-th order and x is considered as the stability index of 
the 1st order. The stability index of the 2nd order is a 
good measure of stability and is shown below. 

Y i2 = ë2 l(ai+2ai-2) = Yi+iYi2Yi-i Pb) 

3.3 Coefficient diagram 
When the plant/controller polynomials are given as 

AP = 0.25X4 + S3 + 2S2 + ass, BP (s) = 1, 

A, (s) = IIs, B, (s) = k2s2 + k,s + ko, (10) 

II =l, k, = 0.5, 4 =l, k, = 0.2, 

the characteristic polynomial is expressed as 

P(s) = 0.25sí + s4 + 2s3 + 2s2 + s + 0.2. (lla) 

Then 

ai = [a, e--a2 a,] = [OZ 1 2 2 1 0.21 (llb) 

Yi = [Y4 ìëY2 yJ =[2 2 2 2.51 (llc) 

2=5 (W 

r; ë[Y; ***y; y;] = [0.5 1 0.9 0.51 We) 
The coefficient diagram is shown as in Fig. 2, where 
coefficient ai is read by the left side scale, and stability 

index x , equivalent time constant 7, and stability limit x* 
are read by the right side scale. The 7 is expressed by a 

line connecting 1 to 7. The stability index x can be 
graphically obtained (Fig. 3a). If the curvature of the Ui 
becomes larger (Fig. 3a), the system becomes more stable, 

corresponding to larger stability index z. If the ai curve 

is left-end down (Fig. 3b), the equivalent time constant 7 

is small and response is fast. The equivalent time 

constant 7 specifies the response speed. 
The coefficient diagram is also used for parameter 

sensitivity analysis and robustness analysis. In this 
example, the characteristic polynomial P(s) is 
decomposed into two component polynomials as follows. 

P(s) = G 6) + pk (s) (12a) 

&(s) = Z1(0.25s5 +s4 + 2S3 +0.5s2) (12b) 

pk (s) = k2s2 + k,s + k, ( w 
The auxiliary sensitivity function T(s) is expressed as 

T(s) = pk (s)/ P(s) ( w 
Eq. (12b) is shown in Fig. 2 with small circles and dotted 
lines. Eq. (12~) is shown with small squares and dotted 
lines. Designer can visually assess the deformation of 
the coeffkient diagram due to the parameter change of k,, 
k,, and k,. Then he can visualize the variation of stability 
and response. Also from Eq. (12d), it is clear that 
robustness can be analyzed by comparison of coefficients 
ai and ki at the coefficient diagram. 

As explained above, the coefficient diagram indicated 
stability, response, and robustness (three major properties 
in control design) in a single diagram, enabling the 
designer to grasp the total picture of control system. At 
present, Bode diagram is used for this purpose. However 

coefficient diagram is more accurate and easy to 
use in actual design. 

10 
'i 

Iî. I 
ë5 4 3 2 li0 

P(S) = &si 
i=O 

Fig. 2. Coefficient diagram 
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a, 

Fig. 3a. Effect of K b. Effect of 7 

3.4 Stability condition 
From the Routh-Hurwitz stability criterion, the 

stability condition for the 3rd order is given as 

a241 -3% . Wa) 

If it is expressed by stability index, 

Y2Ylíl. W) 

The stability condition for the fourth order is given as 

a2 í 6% la3b4 + (a3 kh (19 

Y2 >r;. ( w 
For the system higher than or including 5th degree, 
Lipatov [5] gave the sufficient condition for stability and 
instability in several different forms. The conditions most 
suitable to CDM can be stated as follows; 

ìThe system is stable, if all the partial 4th order 
polynomials are stable with the margin of 1.12. The 
system is unstable if some partial 3rd order polynomial is 
unstable.î 

Thus the sufficient condition for stability is given as 

ai >l.l2[%ai+2 + -ai_ (15a) 
a. 1+1 ai-l 

Yi >l.l2Y;, forall i=2-n-2. (15b) 

The sufficient condition for instability is given as 

ai+iai 5 ai+2ai-i (16a) 

Yi+lYi ì9 forsomei=I-n-2. ( 16b) 
These conditions can be graphically expressed in the 
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coefficient diagram. Fig. 4a is a 3rd-order example. 
Point A is (a, al)ìî and point B is (a3 ao)ë.ë. Thus if A is 

above B, the system is stable. Point C is (y2 yl)ë*ë. If it 
is above 1, the system is stable. 

Fig. 4b is a 4th-order example. Point A is obtained 
by drawing a line from a4 in parallel with line a3 a,. 
Similarly point B is obtained by drawing a line from a, in 
parallel with line a3 a,. The stability condition is a2 > (A 

t B). The other condition is y2> y2*. 

P(s)=O.Ss'+ 2sa+4s+3.2 

Fig. 4a. 3rd order 
P(s)= O.O62Ss'+ OS's'+ 2sa+4s+3.2 

b. 4th order 

3.5 Canonical transfer function 
For a given characteristic polynomial, there exist 

infinite number of open-loop and closed-loop transfer 
functions. The specific transfer functions to represent 
the characteristic polynomial, called canonical transfer 
function, are defined as follows. 

System type 1, canonical open/closed-loop transfer 
function, G,(s) and T,(s). 

G,(s) = a0 I (a,$ + a -. + aIs) (1% 

T,(s)=a,l(a,sî i---~+als+ao) ( 17b) 
System type 2, canonical open/closed-loop transfer 

function, G2(s) and T2(s). 

Gz(s) = (als + a,) I (a,$ + - - - + azs2> (13 

T,(s) =(a,s+a,)l(a,sî +~~~+als+a,) (17d) 

These canonical open/closed-loop transfer functions are 
uniquely defined by the characteristic polynomial P(s), 
and they are helpful to visualize the characteristics of 

P(s). 
Also break point Wi is defined as 

Wi = ai /ai+i =l/Zi . Pa) 

The Wi is the reciprocal of the equivalent time constant of 

high order q . The ratio of adjacent break points is equal 

to the stability index x . 

yi = Oi loi.- wo 
Fig. 5 shows an example of Bode diagram of the 
canonical open-loop transfer function for the system type 
1 and 2. The straight-line approximation (asymptotic 
representation) of Bode diagram used here is somewhat 
different from the ordinary way. The break points are 
chosen from the ratio of the coefficients and not from the 
poles and zeros of the transfer function as in the usual 
case. However this way is more accurate and the 
relation with the coefficient diagram is closer. 

Thus it becomes clear that the coefficient diagram has 

a one-to-one correspondence with the straight-line 
approximation of Bode diagram of its canonical open- 
loop transfer function. 

40 

dB 

0 

1 
w radlsec 

10 

Fig. 5. Canonical open-loop transfer function 

3.6 Standard form 
From number of reasons, which will become clear later, 

the recommended standard form for CDM is 

Yn-1 - Yz = 2, yr = 2.5 . Wa) 

When a, = 0.4 and r = 2.5 are chosen, the characteristic 
polynomial P(s) is obtained by Eq. (7~) in the following 
simple form 

(n-2)(n-1) 

P(s)=2 2 ---Sn +...+2-ëOS6 +2-6s5 +2-3s4 
uw 

+ o.5s3 + s2 + s + 0.4 

The step response of the canonical closed-loop transfer 
function for the system type 1 and 2 for various orders 
are given in Fig. 6 and 7. There is virtually no 
overshoot for the system type 1. There is an overshoot 
of about 40% for system type 2. This overshoot is 
necessary, because the integral of the error for the step 
response must become zero in system type 2. It is also 
noticed that the responses are about the same irrespective 
to the order of the system. Because of this nature, the 
designer can start from a simple controller and move to 
more complicated one in addition to the previous design. 

The settling time is about 2.5 - 32. Many simulation runs 
show that the standard form has the shortest settling time 

for the same value of r. 
The pole location is given in Fig. 7. It is found that 

the three lowest order poles are aligned in a vertical line 
and the two highest order poles are at the point about 49.5 
deg from the negative real axis. The rest of the poles 
are on or close to the negative real axis. For 4th order, 
all poles are exactly on the vertical line. 

It can be mathematically proven that a 3rd order 
system with three poles on a vertical line has no 

overshoot. For y2=2 and y,=2.7, three poles are on a 

vertical line and overshoot is zero. If fi = 2.5 as in the 
standard form, the complex poles are a little bit closer to 
the imaginary axis with the result of a small overshoot. 

The choice of fi = 2.5 instead of 2.7 is made for the 
reason of simplicity. 

In summary, the standard form has the favorable 
characteristics as listed below. 
(1) For system type 1, overshoot is almost zero. For 

system type 2, necessary overshoot of about 40 % is 
realized. 
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(2) 

(3) 

(4) 

(5) 

Among the system with the same equivalent time 

constant r, the standard form has the shortest settling 

time. The settling time is about 2.5-3~ 
The step responses show almost equal waveforms 
irrespective to the order of the characteristic 
polynomials. 
The lower order poles are aligned on a vertical line. 
The higher order poles are located within a sector 
49.5 degrees from the negative real axis, and their 

damping ratio cis larger than 0.65. 
The CDM standard form is very easy to remember. 

In other words, the standard form seems to posses all 
the characteristics of ìgood designsî found from 
experience, such as no overshoot, short settling time, and 
pole alignment on a vertical line. For comparison, 

stability indices xís for various standard forms used in the 
control theory are given in Table 1. It is found that 
CDM standard is similar to Bessel at the low order, and 
become similar to binomial at the high order. 

0 2 4 6 6 10 12 14 
t set 

Fig. 6. Step response, system type 1 

--.,-+-. 3rd. : 

: ___...___.. _ _.__ ____ 6th 

0 
0 2 4 6 8 10 12 14 

t set 

Fig. 7. Step response, system type 2 

3.7 Robustness consideration 
Robustness and stability are completely different 

concepts. Simply stated, stability concerns where the 
poles are located, and robustness concerns how fast the 
poles move to the imaginary axis for the variation of 
parameters. 

Stability is specified by the stability index x of the 
characteristic polynomial, but robustness is only specified 
after the open-loop structure is specified. Thus in 
designing the characteristic polynomial, more 

consideration is required beyond the choice of x. The 
traditional design principle of sticking to the minimum- 
phase controller, wherever possible, with the lowest 

ln3rdl $î g?Q-5 degl 

3 

2j 

lj 

0 

-1j 

-2j 

;3j 

Fig. 8. Pole location 

Table 1. Comparison of stability index 

Standard Stability index Standard Stability index 

forms Y4 Y3 71 Yl form Y4 Y3 Yt Yl 

4 2 
Binomial 3 3 ITAE 1.424 2.641 

2.661 2.25 2.661 1.291 2.039 2.144 
2.5 2 2 2.5 IS68 1.624 1.779 2.102 

2 2 
Butter- 2 2 Kessler 2 2 

worth 2 1.707 2 
I I 

2 2 2 
2 1.618 I.618 2 2 2 2 2 

3 2.5 
Besse I 2.4 2.5 I cw I 2 2.5 

2.222 1.929 2.333 2 2 2.5 
2.143 1.15 1.118 2.2s 2 2 2 2.5 

possible order and with the narrowest possible bandwidth 
is actually found to be a strong guarantee of robustness. 

In the actual design, the choice of yI = 2.5, fi = fi = 2 is 
strongly recommended due to stability and response 

requirement, but it is not necessary to make yh - Y~_~ equal 
to 2. The condition can be relaxed as 

yi >l.Sy; (20) 

With such freedom, the designer has the freedom of 
designing the controller together with the characteristic 
polynomial, and he can integrate robustness in the 
characteristic polynomial with a small sacrifice of 
stability and response. From the sufficient condition for 

stability by Lipatv, stability is guaranteed when all xís are 
larger than 1.5. Lipatov proved in his paper [5] that, if 

all xís are greater than 4, all the roots are negative real. 

Thus xís are usually chosen between 1.5 and 4. 
Because the essence of the CDM lies in the proper 

selection of stability indices xís, some experiences are 
required in actual design, as is true in any design effort. 

4. Recent Development 

There have been three stages in the CDM development. 
(1) At the first stage, design was made only by stability 

indices xís. When stability indices are specified, 
the controller parameters can be expressed in a 
closed form. But they are usually in the form of 
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nonlinear simultaneous equations, and difficult to 
solve except for the simple case. 

(2) At the second stage, the coefficients of the 
characteristic polynomial UiíS are first calculated from 
the specified stability indices and the equivalent time 

constant 2. Then the controller parameters are 
calculated. The controller parameters are related to 
aiís in linear relations called Sylvester matrix, and 
solution becomes straightforward. But this method 
is equivalent to the pole assignment approach. Thus if 
it is not wisely done, robustness issue will come up. 

(3) At the third stage, the coefficient diagram is more 
actively used. This becomes possible by the 
discovery of the graphical representation, in the 
coefficient diagram, of the sufficient condition of 
stability by Lipatov. With some experience, 
designer can answer such problems as ìWhat is the 
proper order of the controller suitable to the plant and 
the performance requirementî or ìWhat degree of 
stability and robustness tradeoff existsî from the 
coefficient diagram. Special CAD for CDM was 
developed on MATLAB basis. It can be downloaded 
from the following site. 

http://www.mss.co.jp/techinfo/cdm-cad/index.htm 

At present, the most efficient way of CDM design 
process is as follows. When the plant is given, the first 
step is to express it in the CDM standard block diagram. 
The second step is to assume denominator of controller in 
an appropriate simple form, usually 1 or s, and draw the 
coefficient diagram for no feedback. 

The third step is the basic design of controller. From 
the shape of the coefficient diagram, the designer can 
intuitively find what type of feedback is necessary to 
modify the coefficient diagram into nice convex form. He 
can roughly sketch the final shape of coefficient diagram, 
and specify the degree of controller and the possible 
equivalent time constant. 

The forth and final step is to design the complete 
controller by CAD for CDM. Parameter adjustment is 
done with the roughly sketched coefficient diagram as the 
design guide. 

5. Conclusions 

The CDM has developed on the needs and experiences 
of the actual controller design, and it contains the rich 
knowledge of the past designers about what is the good 
controller. For this reason the design result is reliable 
and needs minimum amount of field adjustment. 

The CDM can be used as an independent design 
approach, but at the same time it can be used to help 
other approaches, such as the parameter selection of a 
lead-lag compensator, PID parameter selection, and 
weights selection of LQG. Also the CDM can be used 
for the evaluation of the controllers designed by other 
approaches, simply by drawing the coefficient diagram of 
the design results. 

The CDM as explained so far is at the stage of 
development and further effort is needed to make it to full 

maturity. At the present stage, only SISO (including 
SIMO and MISO) system is considered. The extension 
to MIMO system is left for the future studies. 
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