ANALYTIC WEIGHT SELECTION FOR LQ DESIGN
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Abstract. The Coefficient Diagram Method (CDM) is a new design approach, whereby the designer can design
the characteristic polynomial of the closed loop system efficiently taking a good balance of stability, response,
and robustness. The exactly same controller can be designed by LQR, if the states are properly augmented and the
weights are properly selected. These weights may not be positive definite/semi-definite and may be sign indefinite.
From theses results, general rules for weights selection are derived

Key Words Control system design; control system synthesis, control theory, LOR control method, vibration.

LQaxatiT 30 1) 2 AT Y B A B R R 1k

NEER

T - DB - O MEOBRAEL VIS FHICHIHT LI ENTE S,

MEEKE | RFEROH LOREFETH > T SIS LB —-TROEHEIHN L.

TERENE ] E2<

[ U HIE 2 R BIL R ATV B S EA BB (IEE - ¥ EE - A%) £M7LOR TH ko o
5o ZO#R LY LOR - LOG ik i 313 5 EAH B A K> 5 —fE 0L 2 & U1,

1. INTRODUCTION

The purpose of this paper is to show the effective method of
analytically determining the weights for LQR, LQG design.
From the inception of LQ development, the analytical weight
selection has been the concerns of many researchers, and
various efforts have been made to solve the problem (Harvey,
1978) (Stein, 1979) (Gupta 1980).

These efforts include the inverse problem (determination of
the weights for given controllers) (Kalman, 1964) and the
extension of weight Q beyond positive definite/semi-definite
(Hayase, 1973) (Morinari, 1973) (Ohta, 1991) (Manabe,
1991). In spite of these efforts, practical methods are yet to
be developed, and only workable solution at present is
considered to be through iteration (Anderson, 1989, p.156).

These weights are closely related to the characteristic
polynomial of the closed-loop system. If in some way the
characteristic polynomial is properly determined, these
weights can be derived analytically.

The proper selection of the characteristic polynomial is not
difficult, if only stability and response are to be satisfied, but
it becomes complicated when robustness issue is present.
The coefficient diagram method (CDM) (Manabe, 1991,
1994ab, 1997abc, 1998ab) is an answer to this problem.

The strength of CDM lies in that, for any plant, minimum
phase or non-minimum phase, the simplest and robust

controller under practical limitation can be found. LQR and
LQG sometimes fail to produce a robust controller for the
plant with flexibility (poles at the vicinity of the imaginary
axis) as pointed by various authors (Edmunds, 1983, and
Mills, 1992). CDM produces very robust controllers in such
cases. From these results, it becomes evident that these
difficulty can be avoided, if the weights are properly selected
and sign indefinite weights are allowed in LQ design.

In these developments, it becomes clear that LOR design with
proper state augmentation is equivalent to some form of
output feedback design, and it replaces LQR and LQG
settings. The controller thus designed is a dynamic
compensator of the lowest order. Especially when sign
indefinite weights are allowed, such controller is equivalent to
a CDM controller, and it includes all the controllers designed
by classical control and widely used in practice.

This paper is organized as follows. In Section 2, the basics
of CDM is briefly explained. In Section 3, the relations
between the characteristic polynomials and the weights are
examined. In Section 4, a few design examples and general
rules of weights selection for simpler cases are given.

In Section 5, more complicated cases are examined. It is
shown that the solution of CDM is exactly equal to a LQR
controller, whose states are properly augmented and the
weights are properly selected. These weights may not be
positive definite/semi-definite, and may be sign indefinite.
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2. BASICS OF CDM

2.1 General description of CDM

The salient features of CDM will be summarized as follows;

(1) The CDM is an algebraic design method over polynomial
ring in the parameter space. Instead of transfer function, its
denominator and numerator are separately expressed as
polynomial of s, for the plant and the controller. By so
doing, the ambiguity inherent to the transfer function is
avoided, and the same rigor as in the state space
representation is maintained. At the same time, the
compactness of expression as in the transfer function
expression is retained.

(2) A special diagram called "coefficient diagram" is used as
the vehicle to carry the necessary information, and as the
criteria of good design. The coefficient diagram is a semi-
log diagram where the coefficients of characteristic
polynomial are shown in logarithmic scale in the ordinate
and the numbers of power corresponding to each coefficient
are shown in the abscissa, as shown in Fig. 1. The degree
of convexity is a measure of stability. The general
inclination of the curve is a measure of response speed.
The variation of the shape of the curve is a measure of
robustness. Thus the three major characteristics of control
system, namely stability, response, and robustness are
shown graphically in a single diagram, enabling the
designer to make a balanced judgment in the course of his
design.

(3) The tradition of Kessler (1960) standard form is inherited
and improved. The CDM standard form is proposed. There
is no overshoot in the CDM standard, while 8 % overshoot
exists for the Kessler standard form.

(4) As the theoretical background of CDM, the sufficient
condition of stability and instability by Lipatov (1978) is
introduced. The form of expression is modified to suit to
the terms of CDM. The stability can be checked
graphically over the coefficient diagram.

(5) In CDM, the characteristic polynomial and the controller
are designed simultaneously with due consideration to the
performance specification and constraint imposed to the
controller. Because of this simultaneous design nature, the
designer is able to keep good balance between the rigor of
the requirements and the complexity of the controller. Thus
he is able to produce the simplest controller to satisfy the
specification. In CDM, the performance specification is
rewritten in a few parameters (stability index y, and
equivalent time constant T). These parameters specify the
coefficients of the characteristic polynomial. These
coefficients are related to the controller parameters
algebraically in explicit form. These features make
simultaneous design approach possible in CDM.

2. 2 Mathematical relations

Some mathematical relations extensively used in CDM will
be introduced hereafter. . The characteristic polynomial is
given in the following form.

P(s)=a,s"+ ...+a1s+a0:‘izlo a;s' )
The stability index Y, , the equivalent time constant T, and
stability limit y * are defined as follows.

vi=all(a,..a,.), i=l~n-1 (2a)
T=a,/a, (2b)
vi=liy + 1y, . Ya=Ye= (20)

From these equations the following relations are derived.

a,la=(a;la; )Y YaY), i2] (3a)
a;=agt (Y, YD (3b)
Then characteristic polynomial will be expressed by a,, T, and

Y, as follows.
noooi-1
P(s) = a {2 1 17y/_)(as)} +us +1] @)
i=2 j=1
The equivalent time constant of the i-th order T, and the
stability index of the j-th order v, ; are defined as follows.
v=a;,,/a; =t/ (Y2 Y ®)

j-1
Yij:aiz/(ai»jai—j):[lg (Yi+j'-kYi_j+k)k]Yf 6)
Thus T can be considered the equivalent time constant of the
0-th order and v, is considered as the stability index of the 1st

order. The stability index of the 2nd order is a good measure
of stability and is shown below.

‘Yx?.:aizl(at»lair—l):YlflszYz—l ™)

2. 3 Coefficient diagram

When a characteristic polynomial is expressed as

P(s)=0.255%+ 5* + 257 + 252 + 5+ 0.2 ®
then

a,={025 1 2 2 1 02] (9a)

v,=[2 2 2 23] (9b)

tT=5 9¢c)

y;/=[05 1 09 05] (9d)
The coefficient diagram is shown as in Fig. 1, where
coefficient a is read by the left side scale, and stability index
Y, » equivalent time constant T , and stability limit y,* are
read by the right side scale. The T is expressed by a line
connecting 1 to T. The stability index Y, can be graphically
obtained (Fig. 2a). If the curvature of the a, becomes larger
(Fig. 2b), the system becomes more stable, corresponding to
larger stability index y .. If the a curve is left-end down (Fig.
2¢), the equivalent time constant T is small and response is
fast. The equivalent time constant T specifies the response
speed.
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2.4 Stability condition

From the Routh-Hurwitz stability criterion, the stability
condition for the 3rd order is given as

a,a,>asa, . (10a)
If it is expressed by stability index,
Yavi> 1, (10b)
The stability condition for the fourth order is given as
a,>(a,/as)a,+(a,/a)a, (11a)
Y2>75 . (11b)

For the system higher than or including 5th degree, Lipatov
(1978) gave the sufficient condition for stability and
instability in several different forms. The conditions most
suitable to CDM can be stated as follows;

"The system is stable, if all the partial 4th order polynomials
are stable with the margin of 1.12. The system is unstable if

some partial 3rd order polynomial is unstable."

Thus the sufficient condition for stability is given as

a; a;
a,>1.12[ ; a;.;+ : a;_;] (12a)
Y, > 112y, foralli=2~n-2_ (12b)

The sufficient condition for instability is given as
;14,584,208 (13a)
Yio1Y:is1,  forsomei=1~n-2 (13b)

These conditions can be graphically =xpressed in the

a1 3, L a
A L 4
a 3 .> a w
B e
1y // 10 1 > 10
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Yi T T
Y1 Yi© B Yy i
V2 ot 3, 2
Tk / T
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I "2 ......
o Y1 Y3 N
3 2 1 ;0 4 3 2 1 ;0

P(s)=055'+25+45+32 P($)=0.06255'+ 055+ 25 +d5+ 3.2

Fig. 3a. 3rd order b. 4th order

coefficient diagram. Fig. 3a is a 3rd-order example. Point A
is (a, a, )05 and point Bis (a, a 5. Thus if A is above B,
the system is stable. Point Cis (v, v,y Ifit is above 1,
the system is stable.

Fig. 3b is a 4th-order example. Point A is obtained by
drawing a line from a, in parallel with line a, a,. Similarly
point B is obtained by drawing a line from a; in parallel with
line a, a. The stability condition is a, > (A + B). The other
condition is Y, > v,".

2.5 Standard form of CDM
In CDM, the recommended standard form is
Y1=25 Yo =Ya 2= o0 FY272 (14)

The standard form has the favorable characteristics as follows;

(1) When the order of the numerator polynomial is zero, as in
type 1 servo, the system has virtually no overshoot. A
proper overshoot (about 40%) is guaranteed when the
numerator polynomial is selected to form a type 2 servo.

(2) Among the system with the same equivalent time
constant T, the standard form has the shortest settling time.
The settling time is about 2.5 ~3 T.

(3) For the same equivalent time constant, the step responses
of the standard form show almost equal wave forms
irrespective to the order of the characteristic polynomials.

(4) The lower order poles are aligned on a vertical line. The
higher order poles are located within a sector 49.5 degrees
from the negative real axis, and their damping coefficient T
is larger than 0.65.

(5) The CDM standard form is very easy to remember.

2.6 Robustness consideration

In the actual design, the choice of Y, =2.5,v, =Y, =2is
strongly recommended due to stability and response
requirement, but it is not necessary to make y , ~y , equal
to 2. The condition can be relaxed as

(15)
With such freedom, designer have the freedom of designing
the controller together with the characteristic polynomial, and
he can integrate robustness in the the characteristic

Yi>l-5Y:.
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polynomial with a small sacrifice of stability and response.

It is clear from Egs. (2c) (12b) that, if all y s are larger than
1.5, the system is stable. Lipatov (1978) proved, in the
process of proving his main theorem, that all roots are real
negative, if all y, s are larger than 4. From these observation

it is safe to say that y, should be chosen in a region of 1.5 ~
4. Because the essence of the CDM lies in the proper
selection of stability indices y,'s, some experiences are
required in actual design, as is true in any design effort.

3. WEIGHT POLYNOMIAL

3.1 CDM representation

The standard block diagram of the CDM design for a single-
input single-output system is shown in Fig. 4 (Manabe,
1998b), where y, u, X, y, d, and n are reference input, input,
basic state variable, output, disturbance, and noise
respectively.

Controller

A® [

II By(s) 'l‘;

Fig. 4. CDM standard block diagram

When d and n are absent, the responses of x to u and to y_are
given as
A x=u
P(s) x = B,(s) s,
where P(s) is the characteristic polynomial and given as
P(s)= A(5) A (8) + B(s) B(5), (16¢)
When B,(s) is chosen as P(0), steady state value of P(s), Eq.
(16a) becomes as

(16a)
(16b)

P(s) x=P(0) y,, (16d)
3.2 LOR formulation
The plant is expressed in the state space expression
x=Ax+Bu (17a)

where X is a vector of dimension n, and u is a scaler LOR
design is made to minimize the performance index J given as

— z T, T
J—L [x Qx+uRu]dt’ (17b)

where R is positive definite, but Q is not necessarily sign
definite (Morinari,1973). The closed-loop poles of for the

system with the feedback control are given by the stable eigen
values of the Hamiltonian H, where no eigen values lie on

the imaginary axis (Doyle, 1989).
A  -BR'B’

— _AT
e (17c)
When the characteristic polynomial is given as in Eq. (1), the

H=

following relation is obtained.

P(-s)P(s)/ a:=(~1)"det (s I,,— H) (17d)
Thus if P(s) is designed by CDM, the weight Q can be found.
On the contrary, if Q is specified and LQ design is made, P(s)

is obtained and it will be assessed in terms of CDM.

3.3 Squared polynomial

For a given polynomial P(s), P(-s)P(s) is a polynomial in
- 52 = Q, denoted as PP(Q). PP(L) will be called the squared
polynomial of P(s) hereafter, and P(s) will be called the
original polynomial of PP(Q).

P(-s) P(s) = PP(~- s = PP(Q) (18)
If PP(Q) has no positive real roots, there exists one original
polynomial P(s) which is stable. This polynomial will be
called the square-root polynomial of PP(£2). When P(s) is a
characteristic polynomial, P(s) is the square-root polynomial
of the squared polynomial PP(R2) = P(-s) P(s), because it is
stable. The coefficients of these polynomials are related as
follows.

P(s)=a,s"+..+a;s+a,= ;0 a;s (19)
PP(Q)=aq, Q" +..+aq, Q+aq,= ;o aq, Q' (19b)
aq,=al, ag,=aj} (19¢)
aqizaf..za“l a, +2a;,,,a, ,+..
=a2+28 (- 1/4.,8.,  mominG, n-i
wa? (19d)
u:1+2§_(—1)’/v., (19)

In this way the coefficient aq, of PP(Q) is expressed by the
coefficient a and the stability index of high order v, i which,
in turn, is expressed by stability index v, as in Eq. (6). For
simplicity, all v 's are assumed to be equal. Then

Yij = Yij - (20)

and the ratio p = aq, / a2 for different m is calculated as in
Table 1. From this table, it is clear that aq, becomes very

small for Y; less than 2, and becomes negative in some cases.

By Egs. (3b) (19¢), the ratio aq / aq_ is obtained as follows.
agyaq, = (M1 t)*" (21a)
)‘-:(Yn-lY;Z.-z-~-Y'1P’)(”") (21b)

For the standard form of CDM, wherey, =2.5,v, =y, = ...

=2, A\ is a function of n.

A:20,5(n—l) 1.25("—1)/" (210)
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For equal ¥ /'s, A is a function of ¥ ; and n.

A=yo%n-D (21d)
PP(£2) can be normalized as aq, = aq, =1, when equivalent
time constant T is chosen to be A, For the case of CDM
standard form, coefficients aqi‘s are calculated for various order
n by computer. These values are listed in Table 2 together
with A. The actual aq, is obtained as follows.

aq, = aq, (ag,/aq,)""'" ag(normalized) 22)
For the case of equal y,, aq(normalized) is derived from Egs.
(3b) (19¢) (19d) (22) as follows.

i(n—i)

.- (23a)
Usually ¥ i is chosen to be from 1.8 to 2, p is about 0.1 as is

seen from Table 1. Then
aq{normalized) = 0.1y

aq(normalized) =uy

i(n—i)
3 .

(23b)
In this way, the coefficients aq, of the squared polynomial

PP(L) are expressed in terms of the parameters used in CDM.

Table 1 The ratio p = aq_;/alz

W =aq/a?
Y, m=1 m=2 m=0o
4 0.5 0.50781 0.50780
2.5 0.2 0.25120 0.25068
2 0 0.12500 0.12112
1.7 -0.17647 0.062990 0.046533
1.5 -0.33333 0.061728 0.012670
Table 2 The normalized aq,
n aq,_(normalized) A
2 [1 05 1] 1.5811
3 (1 0 10772 1] 2.3208
4 [T 0 2 22361 1] 3.3437
5 [T O 9.6535 83651 45731 1] 4.7818
6 [1 0 37.133 78.000 34.471 9.2832 1] 6.8129
7 [1 0 145.41 600.55 644.21 140.85
18.765 1] 9.6863
8 [1 0 572.43 4690.9 9922.0 5278.4
572.43 37.830 1] 13.753

3.4 Weight polynomial selection

The right hand side of, Eq. (17d) is further simplified in the
standard manner (Kailath,1980, p.651).
(- 1)"det (s I, — H) =det (s],— A) det (- sI,— A")
[1+B'(-sl,-A")'Qsl,-A) 'BR"] (24)
In CDM, the plant is given as

A x=u (252)
A ) =ap,s"..+ap, s+ap,= izz() ap;s'. (25b)

In state space expression, it becomes

x,_,| |-ap._\lap, -ap,_.lap, -ap\lap, -apyap,
X, o] 1 0 0 0
x| 0 1 0 0
%o 0 0 1 0

X, 1/ap,,

X, 2 0

X * 0 “

o |, (26)

where x; is equal to the basic state variable x. Now R is
chosen to 1 and Q is chosen to be a diagonal matrix.
R=1

Q = dlag ([qn— 1 qn—l
Eq. (24) becomes
(= )" det(sI,,— Hy = [AA (- ) + Q(- s/ ap? (28a)

AAL(~5)=A(~9) A0 = 2 apg (—sH' (28b)

(27a)

o 4y 4D (27v)

n-1 :
O(-sH= 2 ¢, (=59 (28c)
i=0

Because, for this problem, the highest coefficient of the
characteristic polynomial a_ is equal to the highest coefficient
of the plant denominator polynomial ap_, Eqgs. (17d) (18)
(28a) give the following relation.

PP(R2) = AA () + O(R) (29a)
PP = 3, aq, @ (29b)
AA () = % apq; Q' (29¢)
Q) = 2; q,%' (29d)

When the squared polynomial of the characteristic polynomial
PP(Q) is specified, the weight polynomial Q() can be
obtained by subtracting the squared polynomial of the plant
denominator polynomial AAP(Q) from PP(Q).

4. DESIGN EXAMPLE

4.1 Proportional control

The first example is a simple proportional control of a 2nd
order system shown in Fig. 5a. The plant and controller
polynomials in CDM from are given as follows.

A =s(G+1), B,=1 (30a)

A =1, BUs)=B,s)=k, (30b)
The characteristic polynomial P(s) becomes

P(s)=s*+s+k, (30c)

In CDM design, y, = 2.5 and k is calculated by Eq. (2a).

ko=all(a,y,)=04 (31)
For this value,

PP(Q) =7 +02Q+0.16, (32a)
Because

AA Q) =Q%+Q (32b)
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y, + u 1 y .
% s(s+1)

Fig. 5a. Proportional control, CDM design

s(s+ 1)

Fig. Sb. LQR design with positve semi-definite Q

—— Sign indefinite Q, - Positeve semi-definite Q
Fig. 6. Comparison of responses

the weight polynomial becomes, by Eq. (29),
0()=-0.8R +0.16,
In this case q, =-0.8 and Q is sign indefinite.

(32¢)

In order to avoid the sign-indefiniteness, q = [q, q,] =[0
0.16] is selected. Then

PP(Q) = Q%+ Q+0.16
By taking the square root polynomial using a special
MATLAB M-File, P(s) is obtained as

P(s) =s5*+ 134165 + 0.4,
The controller to realize the P(s) is

A(s)=1, Bs)=k;s+ky=034165+ 0.4,

B(s)=k,=04 (34)
The controller now becomes a PD controller and its block
diagram is shown in Fig. 5b.

(33a)

(33b)

Fig. 6 shows the comparison of the step responses. It will
be seen that the case of positive semi-definite Q is slower in
response even though the control law is more complicated .
This example shows the greatest shortcoming of LOR design,
that is, the failure of producing even the simplest and weli-
accepted control law.

4.2 Simplified ACC benchmark problem

ACC benchmark problem (Wie, 1992) is a two-mass-spring
control problem, and is used to evaluate various control
design methodologies. The CDM produced a controller which
is comparable to the best controller so-far reported (Manabe,
1997a). In this example, the problem is made simpler by

ST+ kst ks

T

Fig. 7. Simplified ACC benchmark problem

assuming the all the states can be measured. The block
diagram is shown in fig. 7. The plant and controller
polynomials are given as follows.

A (5) = 5% +25%, B,(s)=1 (35a)
A()=1, BU)=kss>+ks*+ks+kg (35b)
Bs) =k, (35¢)
The characteristic polynomial P(s) becomes
P(s)=s*+kys> + (2 +k) 82+ ks + kg, (35d)
The selection of k, = [k, k, k; k] as below
k=2 0 1 02] (36)

will produce a CDM standard controller with the narrowest
bandwidth while keeping all k, non-negative, which roughly
corresponds to the non-minimum phase controller.

For this case

PP(Q) =Q* + 0.4Q% + 0.2Q + 0.04, (37a)
Because

AAQ) = Q" -4Q’ +4Q° (37b)
the weigh polynomial becomes

O(Q) = 4Q° -3.6Q% + 02Q + 0.04, (37c)
Its coefficients ¢, =[q, q, g, q,]are

g,=[4 =36 02 0.04] (37d)

The conspicuous point of g is that large g, term is placed in
order to damp oscillation and negative g, is placed to prevent

the system becomes overly stable. This should be the
common method of selecting weights in flexible systems.

In order to prove this finding, a controller is designed for

g;=[0 0 02 0.04] (382)
The design results are as follows.

k,=[0.72904 026575 10518 0.2] (38b)

v, =[0.23458 66948 2.4414] (38¢c)

The excessively small value of v , suggests the existence of a
vibrational mode, -0.11390 £j1.4287. Actually the
vibrational zeros of the controller, -0.084955 +j1.1843, are
close to the plant vibrational poles, = 1.4142, with the effect
of pole-zero cancellation.

In order to find the effect of negative value of q, a controller

is designed for
g;=[4 0 02 004]

The design results are as follows.

(39a)
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— CDM sign indefinite Q, --- Ordinary Q,

""" Positive semi-definite Q
Fig. 8. Comparison of responses

k;=[24869 1.0923 1.1987 0.2] (39b)

v,=[2 3.2076 2.3234] (39c)
The comparatively large value of Y, suggests the excessive
stability. Fig. 8 shows the comparison of the three cases.
The CDM design gives the best response.

4.3 General rules of weights selection

From the results of Section 3 and the above example, general
rules of specifying PP(Q) and Q(R )are summarized as
follows.

(1) The coefficient aq, and aq, must be positive. The other

aq, should be selected to be non-negative. Then PP(Q) is
positive for any positive real Q and PP(L2) has no
positive real roots. P(s), the square root polynomial of
PP(£2), can be always obtained. The system with this
P(s) as its characteristic polynomial has the stability
better than the Butterworth filter, because the Butterworth
filter corresponds to the case where aq, and aq are
positive and the rest of aq's are all zero. If a negative
coefficient apq, is found in AAp(Q), fill it with the proper
weight q, and make the coefficient aq, nonnegative.
(2) Select aq, as follows.

aq,=aq, (\/ 17)2"’ aq, = ap? (40a)
A is chosen by Table 2 or Eq. (21d). T is chosen from the
requirement of the settling time t, where t_ = 2.5~3t. In
ordinary system, ap, =0, and

qo=4aq,, (40b)
In some cases, the steady state gain k is specified before
hand. In such a case (with ap; = 0), simply select

qo=k, (40c)

(3) Select the rest of aq's, such that PP(Q) becomes a nice

convex curve.

aq, = aq, (aq, laq, aq(normalized) (41a)
aq,(normalized) can be obtained from Table 2 or Eq. (23b).
Weights are obtained by Eq. (29a).

4:=4aq, — apq,
The selection of aq, is not critical, and even very

)(n—i)/n

(41b)

approximate selection will give satisfactory results.

aqi "('.)'w ......... £ ] 0

\
0.1 I\ /
\ / N\
\ [/ -
0.01
\|/
0
4 3 2 1 0

AA,(Q) = Q' - 4Q" + 4Q°
n=4, A=33437, 1=5. ag, = l. ag,=0.04
PP(Q) = Q" +0Q* + 04Q% + 0.2Q + 0.04

Fig.9. Squared coefficient diagram

(4) In the PP(2) design a coefficient diagram of squared
polynomial, which will be called as "squared coefficient
diagram” hereafter, is very helpful. An example is shown
in Fig. 9. First draw AAP(Q) and denote them by circles.
When apq, is negative simply plot the absolute value and
attach (-). Plot aq,, and connect aq, = apq, with a straight
line. Add (actually multiply) aq(normalized) to the point
where the straight line crosses the order i vertical line.
The aq;'s are plotted by dot. The difference of aq; and apq,

is g and indicated by small squares.

5. LOR EQUIVALENT TO CDM

5.1 CDM design

An example of CDM design is given by Manabe (1998b).
The block diagram is shown in Flg. 10. Plant parameters are
given as

A,6)=0255"+125s+s (42a)
B(s)=01s+1 (42b)
Controller is assumed to take the following form.
A6)=1s*+1 s+, (43a)
B (s)=k,s>+k s +k, (43b)
B (s)=k, (43c)

1, =1 and k, = 20 is given as the specification for steady state
gain. Design is made such that 1, /1, = 10, twice of the
highest break point of the plant denominator, with the
following results.

k, =[26.488 45.496 20]

1. =[14750 14.750 1]

a =[0.36876 5.5313 22.811 47.037

48.496 20.000] (44c)

Y, =[3.6371 2 2 2.5] (44d)

T =2.4248 (44e)
Now the problem is to find the equivalent LQR problem and
its weights.

(44a)
(44b)
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Y + ; u " x y
L+ Ls+1, 0255+ 1.255° + 5 »

kst+kis+k,

1 . >
02557 + 1.25s% + 5

kist+ks+k,

Fig. 11. State feedback representation

5.2 LQR weight eqgivalent to CDM

LOR formulation and weight polynomials for the state
feedback case is derived in Section 3. The CDM is for the
output feedback case with a dynamic compensator. The CDM
standard environment can be transformed to a state feedback
case if proper state variables are chosen. An example is
shown in Fig. 11. Denote the i-th derivatives of the plant
input u and output y as u, and y;. Then u, =u, and y, =Y.
Now consider a state augmented system, where the highest
derivative of u, u is considered as the plant input, and rest
of u's and all y/'s are considered as states. The nc is the order
of the controller denominator polynomial. The plant
polynomial equations ares given as

s"“u=u, (45a)

A () y=B,()u, (45b)
The augmented system is now a state feedback case. The
LOR design is made to minimize the performance index J
given as

e np-1

=) (Zawuis 2 avyild (46a)
where qu's and qy;'s are scaler constants, and np is the order of
Ap(s). In ordinary expression, the weight matrices R and Q

are expressed as

R=qu,, (46b)
Q = diag ([gUe_, - Go QVnp-1 - 91 Do), (46¢)
The similar analysis as in Section 3 gives the result as
follows.
PP(Q) = 0,(Q) AA(Q) + 0,(RQ) BB,(Q) (47a)
nc+np .
PP(RQ) = P(- 5)P(s) = 5_‘0 aq, Q' (47b)
np X
AA () = A (—5)A5) = ,;o apq, Q' @7c)
mp .
BB,(RQ) = B,(~5)B,(s) = X bpq; Q' (47d)
Q)= 230 qu; ' (47e)
np-1 .
0= 2 q7, <, (479)

where mp is the order of the plant numerator polynomial

B (s). Thus if PP(Q) is obtained as the result of CDM
design, The weight polynomials Q (&) and Qy(Q) are
obtained.

If the weight polynomials Q (£2) and Qy(R) are given
beforehand, there are two ways to obtain the controller. One
way is by obtaining the characteristic polynomial P(s)
through the square root operation of PP(R2). The controller
are obtained by solving the Diophantine equation Eq. (16c).
The second way is to solve the LOR problem by R and Q in
Egs. (46b) (46¢). In either cases the results are the same.
However the first way is much more convenient, because a
special MATLAB M-file has been developed for this purpose.

In actual practice, PP(Q) design by a squared coefficient
diagram is more convenient than specifying Q_(22) and
Qy(2). The controller design based on the design of PP(2)
is called as "squared coefficient diagram method" (s-CDM).
As the design approach, the ordinary CDM is recommended,
but s-CDM can be used as a complementary approach,
because of its close relation with LQ design.

5.3 Design verification

In order to verify these results, numerical computations are
made. First CDM design is made by using a special
MATLAB M-file called "gkc". The command sequence is
given below.
ap=[0.25 1.25 1 0}; bp=[0.11]; gr=[2222.5};
nc=2; mc=2; 1=2.4248; k0=20; tm=0.5; gkc
The design results are the same as Eqs. (44a, b, ¢, d, e).

(48a)

Using a, denoted as aa inMATLAB, aq, is obtained by
making its squared polynomial using "a2aq". Then weight
polynomial and controller parameters are obtained by "agwc".

aq=a2aq(aa); aqwc (48b)
The exactly the same controller is obtained.
The coefficients of the squared polynomial and weight
polynomials are as follows.
aq =[0.13598 13.771 35.766 221.25
470.37 400.00] (49a)
apq, =[0.0625 1.0625 1 0] (49b)
bpq, = [0.01 1] (49¢c)
qu, = [2.1757 183.35 -3108.3] (494d)
qy; = [3304.7 3574.7  400.00] (49e)

It is worthy to note that there is a large negative weight qu,

for u2 term. Such a weight violates the positive definiteness
and also is very difficult for for the designer to think of at the
design phase.

Using the weight polynomial, the standard LOR design is
made by MATLAB.
R=qu(1),




Q=diag([qu(2:size(qu,2)) gy]),

a=[00000; 10000; [0.11-1.25-10]/0.25;
00100; 0001 0],

b=[1;0;0;0;0],

{K,S,E}=Iqr(a,b,Q,R), kk=[1 K]/K(2) (50)
The results are as follows.

K =[9.9998 0.67796 17.958 30.844 13.559] (51a)

kk =[1.4750 14.750 1 26.488 45.496 20.000] (51b)

Eq. (51a) comresponds to the following controller equation.
u, =-[9.9998u, + 0.67796u, + 17.958y,
+30.844y, + 13.55%y,] (52a)

This will be normalized to make the coefficient for u,, equal

to one. The result is Eq. (51b), and it corresponds to the
following controller equation.
(1.4750s2 + 14750 s + 1) u
=-(26.488 s2 + 45.496 s + 20.000) y
The results are the same as Egs. (44a, b).

(52b)

6. CONCLUSION

In this paper, an analytical weight selection method for LQ,
based on CDM, is proposed, and various design examples are
given. The important results are summarized as follows.

(1) The result of the CDM design gives PP(Q), whose
coefficients aq's are all positive and the squared coefficient
diagram is of a nice convex form.

(2) Weights for LOR design can be deduced from PP(Q), but
the values are usually sign indefinite. It is almost
impossible to find weights first, because they are so
inconsistent.

(3) PP() can be designed directly over the squared
coefficient diagram. If PP(Q) is designed the controller is
obtained immediately. Such design method will be called
s-CDM (squared coefficient diagram method). This method
capitalizes on the fact that the selection of aq, is less
sensitive than that of a, and may be used in
complementary manner to CDM.

(4) The current LQ difficulty in the flexibility control is
found to be due to improper weight selection, which can
be easily remedied.

(5) The result of CDM is equivalent to a LQR controller
with proper state augmentation and with proper weights.
Such weights are usually sign indefinite.

In the course of this development, it becomes clear that Hw
control design is interpreted simply as the different method of
defining PP(Q). This problem will be left for the future.
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